Calibration of a 3D Sensor under Its Orientation Constraint

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Three-dimensional (3D) sensors usually require a calibration procedure. In some cases, scale factor errors depend on the signs of the projections of the vector input signal onto the sensitivity axes of the sensor. To eliminate the ambiguity of scale factor errors, the angular positions of the sensor can be restricted so that the corresponding projections have a definite sign. This paper presents an analytical solution of the optimal calibration problem for a 3D sensor under a constraint on its angular positions.

Sobre autores

A. Matasov

Faculty of Mechanics and Mathematics, Moscow State University, Laboratory of Control and Navigation

Email: alexander.matasov@gmail.com
Moscow, Russia

Kh. In'

Faculty of Mechanics and Mathematics, Moscow State University, Laboratory of Control and Navigation

Autor responsável pela correspondência
Email: yhl2671818702@gmail.com
Moscow, Russia

Bibliografia

  1. Ишлинский А.Ю. Ориентация, гироскопы и инерциальная навигация. М.: Наука, 1976.
  2. Голован А.А., Парусников Н.А. Математические основы навигационных систем. Ч. I. Математические модели инерциальной навигации. М.: МАКС Пресс, 2011.
  3. Cai Q., Yang G., Song N., Lin Y. Systematic calibration for ultra-high accuracy of inertial measurement unit // Sensors. 2016. V. 16. P. 940-955.
  4. Secer G., Barshan B. Improvements in deterministic error modeling and calibration of inertial sensors and magnitometers // Sensors and Actuators A. 2016. (247). P. 522-538.
  5. Вавилова Н.Б., Васинева И.А., Голован А.А., Козлов А.В., Папуша И.А., Парусников Н.А. Калибровка в инерциальной навигации // Фундаментальная и прикладная математика. 2018. Т. 22. № 2. С. 89-115.
  6. Kozlov A., Tarygin I. Real-time estimation of temperature time derivative in inertial measurement unit by nite-impulse-response exponential regression on updates // Sensors. V. 20. No. 5. P. 1299-1319.
  7. Голован А.А., Матасов А.И., Тарыгин И.Е. Калибровка блока ньютонометров с асимметричными моделями показаний чувствительных элементов // Изв. РАН. Теория и системы управления. 2022. № 5. С. 107-119.
  8. Bolotin Y., Savin V. Turntable IMU calibration algorithm based on the Fourier transform technique // Sensors. 2023. No. 2. P. 1045-1060.
  9. Лидов М.Л. К априорным оценкам точности определения параметров по методу наименьших квадратов // Космич. исследования. 1964. Т. 2. № 5. С. 713-715.
  10. Красовский Н.Н. К теории управляемости и наблюдаемости линейных динамических систем // Прикл. математика и механика. 1964. Т. 28. № 1. С. 3-14.
  11. Красовский Н.Н. Теория управления движением. М.: Наука, 1968.
  12. Лидов М.Л. Минимаксные методы оценивания. М.: Препринт № 71. Ин-т прикл. мат. им. М.В. Келдыша РАН. 2010.
  13. Бахшиян Б.Ц., Назиров Р.Р., Эльясберг П.Е. Определение и коррекция движения. М.: Наука, 1980.
  14. Белоусов Л.Ю. Оценивание параметров движения космических аппаратов. М.: Физматлит, 2002.
  15. Матасов А.И. Метод гарантирующего оценивания. М.: Изд-во МГУ, 2009.
  16. Matasov A.I. Estimators for Uncertain Dynamic Systems. Dordrecht-Boston-London: Springer Science+Business Media, B.V., 2013.
  17. Бобрик Г.И., Матасов А.И. Оптимальное гарантирующее оценивание параметров блока акселерометров // Изв. РАН. Механика твердого тела. 1993. № 5. С. 8-14.
  18. Акимов П.А., Деревянкин А.В., Матасов А.И. Гарантирующее оценивание и l1-аппроксимация в задачах оценивания параметров БИНС при стендовых испытаниях. М.: Изд-во МГУ, 2012.
  19. Матасов А.И. Вариационные задачи для калибровки блока ньютонометров // АиТ. 2019. № 12. С. 59-79. 2019.
  20. Браславский Д.А., Поликовский Е.Ф., Якубович А.М. Метод калибровки трех-осного блока акселерометров // Заявка на изобретение № 2422425/23 с приоритетом от 24 ноября 1976 г.
  21. Чесноков Г.И., Поликовский Е.Ф., Молчанов А.В., Кремер В.И. Некоторые пути улучшения тактико-технических характеристик бесплатформенных инерциальных навигационных систем / Сб. X СПб междунар. конф. по интегрированным навигационным системам. Сб. матер. СПб.: ГНЦ РФ "ЦНИИ Электроприбор", 2003. С. 155-164.
  22. Измайлов Е.А., Лепе С.Н., Молчанов А.В., Поликовский Е.Ф. Скалярный способ калибровки и балансировки бесплатформенных инерциальных навигационных систем / Сб. Юбилейная XV СПб междунар. конф. по интегрированным навигационным системам. Сб. матер. СПб.: ГНЦ РФ "ЦНИИ Электроприбор", 2008. С. 145-154.
  23. Болотин Ю.В., Голиков В.П., Ларионов С.В., Требухов А.В. Алгоритм калибровки платформенной инерциальной навигационной системы // Гироскопия и навигация. 2008. № 3. С. 13-27.
  24. Смоляк С.А. Об оптимальном восстановлении функций и функционалов от них // Дисс.. канд. физ.-мат. наук. М.: Механико-мат. факультет МГУ, 1965.
  25. Марчук А.Г., Осипенко Л.Ю. Наилучшее приближение функций, заданных с погрешностью в конечном числе точек // Математические заметки. 1975. Т. 17. № 3. С. 359-368.
  26. Milanese M., Tempo R. Optimal algorithms theory for robust estimation and prediction // IEEE Transact. Autom. Control. 1985. AC-30. No. 8. P. 730-743.
  27. Матасов А.И. Об оптимальности линейных алгоритмов гарантированного оценивания, I, II // Космич. исследования. 1988. Т. 26. № 5-6. С. 643-653, 807-812.
  28. Экланд И., Темам Р. Выпуклый анализ и вариационные проблемы. М.: Мир, 1979.
  29. Алексеев В.М., Тихомиров В.М., Фомин С.В. Оптимальное управление. М.: Физматлит, 2007.
  30. Магарил-Ильяев Г.Г., Тихомиров В.М. Выпуклый анализ и его приложения. М.: Книжный дом "Либроком", 2011.
  31. Хорн Р., Джонсон Ч. Матричный анализ. М.: Мир, 1989.

Declaração de direitos autorais © The Russian Academy of Sciences, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies