A Comprehensive Method of Angular Super-Resolution of a Group Target
- Authors: Lagovskiy B.A1, Rubinovich E.Y.1
-
Affiliations:
- Issue: No 12 (2025)
- Pages: 66-84
- Section: Nonlinear systems
- URL: https://journals.rcsi.science/0005-2310/article/view/354262
- DOI: https://doi.org/10.7868/S2413977725120033
- ID: 354262
Cite item
Abstract
About the authors
B. A Lagovskiy
Email: robertlag@yandex.ru
E. Ya Rubinovich
Email: rubinvch@gmail.com
References
- Morse P., Feshbach H. Methods of Theoretical Physics. McGraw-Hill. Science/Engineering/Math. 1953. 1978 p.
- Uttam S., Goodman N.A. Superresolution of coherent sources in real-beam Data // IEEE Trans. Aerospace and Electronic Systems. 2010. V. 46. No. 3. P. 1557–1566.
- Park S.C., Park M.K., Kang M.G. Super-resolution image reconstruction: a technical overview // IEEE Signal Processing Magazine. 2003. V. 20(3). P. 21–36.
- Kasturiwala S.B., Ladhake S.A. Superresolution: A novel application to image restoration // Int. J. Comput. Sci. Engineer. 2010. No. 5. P. 1659–1664.
- Waweru N.P., Konditi D.B.O., Langat P.K. Performance Analysis of MUSIC Root-MUSIC and ESPRIT // DOA Estimation Algorithm. Int. J. Electric. Comput. Energet. Electron. Comm. Engineering. 2014. V. 8. No. 1. P. 209–216.
- Lavate T.B., Kokate V.K., Sapkal A.M. Performance Analysis of MUSIC and ESPRIT // DOA Estimation Algorithms for Adaptive Array Smart Antenna in Mobile Communication. 2nd Int. Conf. on Computer and Network Technology ICCNT, United States. 2010. P. 308–311.
- Almeida M.S., Figueiredo M.A. Deconvolving images with unknown boundaries using the alternating direction method of multipliers // IEEE Trans. Image Process. 2013. V. 22. No. 8. P. 3074–3086.
- Evdokimov N.A., Lukyanenko D.V., Yagola A.G. Application of multiprocessor systems to solving the two-dimensional convolution-type Fredholm integral equations of the first kind for vector-functions // Numerical Methods and Programming. 2009. V. 10. P. 263.
- Lagovsky B.A., Rubinovich E.Y. Algebraic methods for achieving superresolution by digital antenna arrays // Mathematics. 2023. V. 11. No. 4. P. 1–9. https://doi.org/10.3390/math11041056
- Lagovsky B., Samokhin A., Shestopalov Y. Angular Superresolution Based on A Priori Information. Radio Science // 2021. V. 5. Issue 3. P. 1–11. https://doi.org/10.1029/2020RS007100
- Lagovsky B.A., Rubinovich E.Y. A modified algebraic method of mathematical signal processing in radar problems // Results in Control and Optimization. 2024. V. 14. No. 3. https://doi.org/10.1016/j.rico.2024.100405
- Alexandrov A.E., Borisov S.P., Bunina L.V., Bikovsky S.S., Stepanova I.V., Titov A.P. Statistical model for assessing the reliability of non-destructive testing systems by solving inverse problems // Russ. Technol. J. 2023. V. 11(3). P. 56–69.
- Lagovsky B., Rubinovich E. Algorithms for Digital Processing of Measurement Data Providing Angular Superresolution // Mekhatronika, Avtomatizatsiya, Upravlenie. 2021. V. 22(7). P. 349–356.
- Lagovsky B., Rubinovich E. Achieving Angular Superresolution of Control and Measurement Systems in Signal Processing // Advances in Systems Science and Applications. 2021. V. 21. No. 2. P. 104–116.
- Lagovsky B.A., Rubinovich E.Y. A modified algebraic method of mathematical signal processing in radar problems // Results in Control and Optimization. 2024. V. 14. No. 3. https://doi.org/10.1016/j.rico.2024.10040
- Tuzonos A.H., Apecwun B.H. Merоды решения некорректных задач. М.: Наука, 1979.
- Лаговский Б.А., Рубинович Е.Я. Повышение углового разрешения и дальности действия измерительных систем, использующих сверхширокополосные сигналы // АиТ. 2023. № 10. С. 72–90. https://doi.org/10.31857/S0005231023100070
- Келли К.Т. Итерационные методы оптимизации // SIAM Frontiers in Applied Mathematics. No. 18. 1999.
- Матушой D.W. An Algorithm for Least-Squares Estimation of Nonlinear Parameters // J. Soc. Indust. Appl. Math. 1963. V. 11. No. 2. P. 431–441. https://doi.org//10.1137/0111030
- Lourakis M.I.A., Argyros A.A. Is Levenberg-Marquardt the Most Efficient Optimization Algorithm for Implementing Bundle Adjustment // ICCV'05 Proceedings of the Tenth IEEE International Conference on Computer Vision. V. 2. Beijing, China. P. 1526–1531. https://doi.org/10.1109/ICCV.2005.128
- Nocedal J., Wright, S.J. Numerical Optimization. New York: Springer, 2006. https://doi.org/10.1007/978-0-387-40065-5
- Seber G.A.F., Wild C.J. Nonlinear Regression. New York: John Wiley and Sons, 1989.
- Oosterbaan R.J. Frequency and Regression Analysis / Drainage Principles and Applications / H.P. Ritzema. Wageningen, The Netherlands: International Institute for Land Reclamation and Improvement (ILRI). 1994. V. 16. P. 175–224.
- Lawrenko A., Cavers J.K., Woodward G.K. Harmonic Radar With Adaptively Phase-Coherent Auxiliary Transmitters // IEEE Transactions on Signal Processing. 2022. V. 70. P. 1788–1802. https://doi.org/10.1109/TSP.2022.3164183
- Harzheim T., Muhmel M., Heuermann H. A SFCW harmonic radar system for maritime search and rescue using passive and active tags // Int. J. Microwave Wirel. Technol. 2021. V. 13(7) P. 691–707. https://doi.org/10.1017/S1759078721000520
- Mazzaro G.J., Martone A.F. Multitone harmonic radar // Proc. SPIE 8714, Radar Sensor Technology XVII, 87140E (31 May 2013). https://doi.org/10.1117/12.2014241
- Kumar D., Mondal S., Karuppuswami S., Deng Y., Chahal P. Harmonic RFID communication using conventional UHF system // IEEE J. Radio Freq. Identif. 2019. V. 3. No. 4. P. 227–235.
- Mondal S., Kumar D., Chahal P. Recent advances and applications of passive harmonic RFID systems // A Rev. Micromachines. 2021. V. 12. No. 4. P. 1–22.
- Viikari V., Sepp H., Kim D.-W. Intermodulation read-out principle for passive wireless sensors. 2011. IEEE Transactions on Microwave Theory and Techniques. V. 59. No. 4. P. 1025–1031.
Supplementary files


