Signal Recovery by Stochastic Optimization


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We discuss an approach to signal recovery in Generalized Linear Models (GLM) in which the signal estimation problem is reduced to the problem of solving a stochastic monotone Variational Inequality (VI). The solution to the stochastic VI can be found in a computationally efficient way, and in the case when the VI is strongly monotone we derive finite-time upper bounds on the expected ‖ · ‖22 error converging to 0 at the rate O(1/K) as the number K of observation grows. Our structural assumptions are essentially weaker than those necessary to ensure convexity of the optimization problem resulting from Maximum Likelihood estimation. In hindsight, the approach we promote can be traced back directly to the ideas behind the Rosenblatt’s perceptron algorithm.

作者简介

A. Juditsky

LJK, Université Grenoble Alpes

编辑信件的主要联系方式.
Email: aanatoli.juditsky@univ-grenoble-alpes.fr
法国, Saint-Martin-d’Hères

A. Nemirovski

ISyE, Georgia Institute of Technology

Email: aanatoli.juditsky@univ-grenoble-alpes.fr
美国, Atlanta, Georgia

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Inc., 2019