Recurrent Algorithms of Structural Classification Analysis for Complex Organized Information


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

For the structural classification analysis of complex organized information, we propose to use recurrent algorithms of stochastic approximation type. We introduce classification quality functionals that depend on non-normalized and zero moments of probability distribution functions for the probability of sample objects appearing in the classes, as well as the type of optimal classification. We propose a new classification algorithm for this type of classification quality criteria and prove a theorem about its convergence that ensures the stationary value of the corresponding functional. We show that the proposed algorithm can be used to solve a wide class of problems in structural classification analysis.

作者简介

A. Dorofeyuk

Markov Processes International

Email: bauman52@mail.ru
美国, New York

E. Bauman

Markov Processes International

编辑信件的主要联系方式.
Email: bauman52@mail.ru
美国, New York

Yu. Dorofeyuk

Trapeznikov Institute of Control Sciences

Email: bauman52@mail.ru
俄罗斯联邦, Moscow

A. Chernyavskii

Trapeznikov Institute of Control Sciences

Email: bauman52@mail.ru
俄罗斯联邦, Moscow

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2018