Recurrent Algorithms of Structural Classification Analysis for Complex Organized Information
- 作者: Dorofeyuk A.A.1, Bauman E.V.1, Dorofeyuk Y.A.2, Chernyavskii A.L.2
- 
							隶属关系: 
							- Markov Processes International
- Trapeznikov Institute of Control Sciences
 
- 期: 卷 79, 编号 10 (2018)
- 页面: 1854-1862
- 栏目: Problems of Optimization and Simulation at Control of Development of Large-Scale Systems
- URL: https://journals.rcsi.science/0005-1179/article/view/151049
- DOI: https://doi.org/10.1134/S0005117918100090
- ID: 151049
如何引用文章
详细
For the structural classification analysis of complex organized information, we propose to use recurrent algorithms of stochastic approximation type. We introduce classification quality functionals that depend on non-normalized and zero moments of probability distribution functions for the probability of sample objects appearing in the classes, as well as the type of optimal classification. We propose a new classification algorithm for this type of classification quality criteria and prove a theorem about its convergence that ensures the stationary value of the corresponding functional. We show that the proposed algorithm can be used to solve a wide class of problems in structural classification analysis.
作者简介
A. Dorofeyuk
Markov Processes International
														Email: bauman52@mail.ru
				                					                																			                												                	美国, 							New York						
E. Bauman
Markov Processes International
							编辑信件的主要联系方式.
							Email: bauman52@mail.ru
				                					                																			                												                	美国, 							New York						
Yu. Dorofeyuk
Trapeznikov Institute of Control Sciences
														Email: bauman52@mail.ru
				                					                																			                												                	俄罗斯联邦, 							Moscow						
A. Chernyavskii
Trapeznikov Institute of Control Sciences
														Email: bauman52@mail.ru
				                					                																			                												                	俄罗斯联邦, 							Moscow						
补充文件
 
				
			 
						 
						 
					 
						 
						 
				 
  
  
  
  
  电邮这篇文章
			电邮这篇文章  开放存取
		                                开放存取 ##reader.subscriptionAccessGranted##
						##reader.subscriptionAccessGranted## 订阅存取
		                                		                                        订阅存取
		                                					