Robust Stability of Linear Periodic Systems
- Авторы: Kravchuk S.V.1, Slyn’ko V.I.2
-
Учреждения:
- Bohdan Khmelnytsky National University of Cherkasy
- University of Würzburg, Institute of Mathematics
- Выпуск: Том 80, № 12 (2019)
- Страницы: 2108-2125
- Раздел: Linear Systems
- URL: https://journals.rcsi.science/0005-1179/article/view/151225
- DOI: https://doi.org/10.1134/S0005117919120026
- ID: 151225
Цитировать
Аннотация
A new method for analyzing the robust stability of linear periodic systems is proposed, which is based on the ideas of commutator calculus in combination with Lyapunov’s direct method. The stability analysis of a linear nonautonomous system of ordinary differential equations is reduced to the stability analysis of a linear system of differential equations with impulse action, for which Lyapunov’s direct method is used. New sufficient conditions for the robust stability of a linear periodic system with non-periodic perturbations are established. Some illustrative examples on the robust stability analysis of linear systems are given.
Об авторах
S. Kravchuk
Bohdan Khmelnytsky National University of Cherkasy
Автор, ответственный за переписку.
Email: qkp@ukr.net
Украина, Cherkasy
V. Slyn’ko
University of Würzburg, Institute of Mathematics
Автор, ответственный за переписку.
Email: vitstab@ukr.net
Германия, Würzburg
Дополнительные файлы
