Conditionally Minimax Nonlinear Filter and Unscented Kalman Filter: Empirical Analysis and Comparison
- Autores: Bosov A.V.1,2, Miller G.B.1
- 
							Afiliações: 
							- Institute of Informatics Problems of the Federal Research Center “Computer Science and Control” of the Russian Academy of Sciences
- Moscow Aviation Institute
 
- Edição: Volume 80, Nº 7 (2019)
- Páginas: 1230-1251
- Seção: Stochastic Systems
- URL: https://journals.rcsi.science/0005-1179/article/view/151431
- DOI: https://doi.org/10.1134/S0005117919070026
- ID: 151431
Citar
Resumo
We present the results of the analysis and comparison of the properties of two concepts in state filtering problems for nonlinear stochastic dynamic observation systems with discrete time: sigma-point Kalman filter based on a discrete approximation of continuous distributions and conditionally minimax nonlinear filter that implements the conditionally optimal filtering method based on simulation modeling. A brief discussion of the structure and properties of the estimates and justifications of the corresponding algorithms is accompanied by a significant number of model examples illustrating both positive applications and limitations of the efficiency for the estimation procedures. The simplicity and clarity of the considered examples (scalar autonomous regressions in the state equation and linear observations) allow us to objectively characterize the considered estimation methods. We propose a new modification of the nonlinear filter that combines the ideas of both considered approaches.
Sobre autores
A. Bosov
Institute of Informatics Problems of the Federal Research Center “Computer Science and Control” of the Russian Academy of Sciences; Moscow Aviation Institute
							Autor responsável pela correspondência
							Email: abosov@frccsc.ru
				                					                																			                												                	Rússia, 							Moscow; Moscow						
G. Miller
Institute of Informatics Problems of the Federal Research Center “Computer Science and Control” of the Russian Academy of Sciences
							Autor responsável pela correspondência
							Email: gmiller@frccsc.ru
				                					                																			                												                	Rússia, 							Moscow						
Arquivos suplementares
 
				
			 
						 
						 
						 
						 
					 
				 
  
  
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail  Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Somente assinantes
		                                		                                        Somente assinantes
		                                					