The Pursuit-Evasion Game on the 1-Skeleton Graph of a Regular Polyhedron. II


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Part II of the paper considers a game between a group of n pursuers and one evader that move along the 1-Skeleton graph M of regular polyhedrons of three types in the spaces ℝd, d ≥ 3. Like in Part I, the goal is to find an integer N(M) with the following property: if nN(M), then the group of pursuers wins the game; if n < N(M), the evader wins. It is shown that N(M) = 2 for the d-dimensional simplex or cocube (a multidimensional analog of octahedron) and N(M) = [d/2] + 1 for the d-dimensional cube.

作者简介

A. Azamov

Institute of Mathematics of the National University of Uzbekistan

编辑信件的主要联系方式.
Email: abdulla.azamov@gmail.com
乌兹别克斯坦, Tashkent

A. Kuchkarov

Institute of Mathematics of the National University of Uzbekistan; Tashkent Institute of Architecture and Civil Engineering

Email: abdulla.azamov@gmail.com
乌兹别克斯坦, Tashkent; Tashkent

A. Holboyev

Tashkent Institute of Architecture and Civil Engineering

Email: abdulla.azamov@gmail.com
乌兹别克斯坦, Tashkent

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Inc., 2019