Algorithms for constructing optimal n-networks in metric spaces


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We study optimal approximations of sets in various metric spaces with sets of balls of equal radius. We consider an Euclidean plane, a sphere, and a plane with a special non-uniform metric. The main component in our constructions of coverings are optimal Chebyshev n-networks and their generalizations. We propose algorithms for constructing optimal coverings based on partitioning a given set into subsets and finding their Chebyshev centers in the Euclidean metric and their counterparts in non-Euclidean ones. Our results have both theoretical and practical value and can be used to solve problems arising in security, communication, and infrastructural logistics.

Sobre autores

A. Kazakov

Matrosov Institute for System Dynamics and Control Theory, Siberian Branch

Autor responsável pela correspondência
Email: kazakov@icc.ru
Rússia, Irkutsk

P. Lebedev

Krasovskii Institute of Mathematics and Mechanics, Ural Branch

Email: kazakov@icc.ru
Rússia, Yekaterinburg

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2017