Robust filtering for a class of nonlinear stochastic systems with probability constraints


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

This paper is concerned with the probability-constrained filtering problem for a class of time-varying nonlinear stochastic systems with estimation error variance constraint. The stochastic nonlinearity considered is quite general that is capable of describing several well-studied stochastic nonlinear systems. The second-order statistics of the noise sequence are unknown but belong to certain known convex set. The purpose of this paper is to design a filter guaranteeing a minimized upper-bound on the estimation error variance. The existence condition for the desired filter is established, in terms of the feasibility of a set of difference Riccati-like equations, which can be solved forward in time. Then, under the probability constraints, a minimax estimation problem is proposed for determining the suboptimal filter structure that minimizes the worst-case performance on the estimation error variance with respect to the uncertain second-order statistics. Finally, a numerical example is presented to show the effectiveness and applicability of the proposed method.

Sobre autores

Lifeng Ma

School of Automation

Autor responsável pela correspondência
Email: malifeng@njust.edu.cn
República Popular da China, Nanjing

Zidong Wang

Brunel University London; King Abdulaziz University

Email: malifeng@njust.edu.cn
Reino Unido da Grã-Bretanha e Irlanda do Norte, Uxbridge, Middlesex; Jeddah

Hak-Keung Lam

King’s College London, Strand Campus

Email: malifeng@njust.edu.cn
Reino Unido da Grã-Bretanha e Irlanda do Norte, London

Fuad Alsaadi

King Abdulaziz University

Email: malifeng@njust.edu.cn
Arábia Saudita, Jeddah

Xiaohui Liu

Brunel University London

Email: malifeng@njust.edu.cn
Reino Unido da Grã-Bretanha e Irlanda do Norte, Uxbridge, Middlesex

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2016