Experimental and analytic comparison of the accuracy of different estimates of parameters in a linear regression model
- Авторлар: Goryainova E.R.1, Botvinkin E.A.2
-
Мекемелер:
- National Research University Higher School of Economics
- SJC “Europlan,”
- Шығарылым: Том 78, № 10 (2017)
- Беттер: 1819-1836
- Бөлім: Stochastic Systems
- URL: https://journals.rcsi.science/0005-1179/article/view/150700
- DOI: https://doi.org/10.1134/S000511791710006X
- ID: 150700
Дәйексөз келтіру
Аннотация
We consider LS-, LAD-, R-, M-, S-, LMS-, LTS-, MM-, and HBR-estimates for the parameters of a linear regression model with unknown noise distribution. With computer modeling for medium sized samples, we compare the accuracy of the considered estimates for the most popular probability distributions of noise in a regression model. For different noise distributions, we analytically compute asymptotic efficiencies of LS-, LAD-, R-, M-, S-, and LTS- estimates. We give recommendations for practical applications of these methods for different noise distributions in the model. We show examples on real datasets that support the advantages of robust estimates.
Авторлар туралы
E. Goryainova
National Research University Higher School of Economics
Хат алмасуға жауапты Автор.
Email: el-goryainova@mail.ru
Ресей, Moscow
E. Botvinkin
SJC “Europlan,”
Email: el-goryainova@mail.ru
Ресей, Moscow
Қосымша файлдар
