Pronormality of Hall Subgroups in Their Normal Closure


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

It is known that for any set π of prime numbers, the following assertions are equivalent: (1) in any finite group, π-Hall subgroups are conjugate; (2) in any finite group, π-Hall subgroups are pronormal. It is proved that (1) and (2) are equivalent also to the following: (3) in any finite group, π-Hall subgroups are pronormal in their normal closure. Previously [10, Quest. 18.32], the question was posed whether it is true that in a finite group, π-Hall subgroups are always pronormal in their normal closure. Recently, M. N. Nesterov [7] proved that assertion (3) and assertions (1) and (2) are equivalent for any finite set π. The fact that there exist examples of finite sets π and finite groups G such that G contains more than one conjugacy class of π-Hall subgroups gives a negative answer to the question mentioned. Our main result shows that the requirement of finiteness for π is unessential for (1), (2), and (3) to be equivalent.

Негізгі сөздер

Авторлар туралы

E. Vdovin

Novosibirsk State University

Хат алмасуға жауапты Автор.
Email: vdovin@math.nsc.ru
Ресей, ul. Pirogova 2, Novosibirsk, 630090

M. Nesterov

Novosibirsk State University

Email: vdovin@math.nsc.ru
Ресей, ul. Pirogova 2, Novosibirsk, 630090

D. Revin

Novosibirsk State University

Email: vdovin@math.nsc.ru
Ресей, ul. Pirogova 2, Novosibirsk, 630090

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Springer Science+Business Media, LLC, part of Springer Nature, 2018