Divisible Rigid Groups. Algebraic Closedness and Elementary Theory


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A group G is said to be rigid if it contains a normal series G = G1 > G2 > … > Gm > Gm+1 = 1, whose quotients Gi/Gi+1 are Abelian and, treated as right ℤ[G/Gi]-modules, are torsion-free. A rigid group G is divisible if elements of the quotient Gi/Gi+1 are divisible by nonzero elements of the ring ℤ[G/Gi]. Every rigid group is embedded in a divisible one. We prove two theorems. Theorem 1 says that the following three conditions for a group G are equivalent: G is algebraically closed in the class Σm of all m-rigid groups; G is existentially closed in the class Σm; G is a divisible m-rigid group. Theorem 2 states that the elementary theory of a class of divisible m-rigid groups is complete.

Sobre autores

N. Romanovskii

Sobolev Institute of Mathematics; Novosibirsk State University

Autor responsável pela correspondência
Email: rmnvski@math.nsc.ru
Rússia, pr. Akad. Koptyuga 4, Novosibirsk, 630090; ul. Pirogova 1, Novosibirsk, 630090

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Springer Science+Business Media, LLC, part of Springer Nature, 2017