Combinatorics on Binary Words and Codimensions of Identities in Left Nilpotent Algebras


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Numerical characteristics of polynomial identities of left nilpotent algebras are examined. Previously, we came up with a construction which, given an infinite binary word, allowed us to build a two-step left nilpotent algebra with specified properties of the codimension sequence. However, the class of the infinite words used was confined to periodic words and Sturm words. Here the previously proposed approach is generalized to a considerably more general case. It is proved that for any algebra constructed given a binary word with subexponential function of combinatorial complexity, there exists a PI-exponent. And its precise value is computed.

Авторлар туралы

M. Zaicev

Lomonosov Moscow State University

Хат алмасуға жауапты Автор.
Email: zaicevmv@mail.ru
Ресей, Leninskie Gory 1, Moscow, 119991

D. Repovš

Univerza v Ljubljani

Email: zaicevmv@mail.ru
Словения, Kongresni trg 12, Ljubljana, 1000

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Springer Science+Business Media, LLC, part of Springer Nature, 2019