Combinatorics on Binary Words and Codimensions of Identities in Left Nilpotent Algebras
- Авторлар: Zaicev M.V.1, Repovš D.D.2
-
Мекемелер:
- Lomonosov Moscow State University
- Univerza v Ljubljani
- Шығарылым: Том 58, № 1 (2019)
- Беттер: 23-35
- Бөлім: Article
- URL: https://journals.rcsi.science/0002-5232/article/view/234117
- DOI: https://doi.org/10.1007/s10469-019-09522-6
- ID: 234117
Дәйексөз келтіру
Аннотация
Numerical characteristics of polynomial identities of left nilpotent algebras are examined. Previously, we came up with a construction which, given an infinite binary word, allowed us to build a two-step left nilpotent algebra with specified properties of the codimension sequence. However, the class of the infinite words used was confined to periodic words and Sturm words. Here the previously proposed approach is generalized to a considerably more general case. It is proved that for any algebra constructed given a binary word with subexponential function of combinatorial complexity, there exists a PI-exponent. And its precise value is computed.
Авторлар туралы
M. Zaicev
Lomonosov Moscow State University
Хат алмасуға жауапты Автор.
Email: zaicevmv@mail.ru
Ресей, Leninskie Gory 1, Moscow, 119991
D. Repovš
Univerza v Ljubljani
Email: zaicevmv@mail.ru
Словения, Kongresni trg 12, Ljubljana, 1000
Қосымша файлдар
