Separability of Schur Rings over Abelian p-Groups
- 作者: Ryabov G.K.1
-
隶属关系:
- Novosibirsk State University
- 期: 卷 57, 编号 1 (2018)
- 页面: 49-68
- 栏目: Article
- URL: https://journals.rcsi.science/0002-5232/article/view/234073
- DOI: https://doi.org/10.1007/s10469-018-9478-5
- ID: 234073
如何引用文章
详细
A Schur ring (an S-ring) is said to be separable if each of its algebraic isomorphisms is induced by an isomorphism. Let Cn be the cyclic group of order n. It is proved that all S-rings over groups \( D={C}_p\times {C}_{p^k} \), where p ∈ {2, 3} and k ≥ 1, are separable with respect to a class of S-rings over Abelian groups. From this statement, we deduce that a given Cayley graph over D and a given Cayley graph over an arbitrary Abelian group can be checked for isomorphism in polynomial time with respect to |D|.
作者简介
G. Ryabov
Novosibirsk State University
编辑信件的主要联系方式.
Email: gric2ryabov@gmail.com
俄罗斯联邦, ul. Pirogova 1, Novosibirsk, 630090
补充文件
