Polynomially Complete Quasigroups of Prime Order
- Авторлар: Galatentko A.V.1, Pankrat’ev A.E.1, Rodin S.B.1
-
Мекемелер:
- Lomonosov Moscow State University
- Шығарылым: Том 57, № 5 (2018)
- Беттер: 327-335
- Бөлім: Article
- URL: https://journals.rcsi.science/0002-5232/article/view/234100
- DOI: https://doi.org/10.1007/s10469-018-9505-6
- ID: 234100
Дәйексөз келтіру
Аннотация
We formulate a polynomial completeness criterion for quasigroups of prime order, and show that verification of polynomial completeness may require time polynomial in order. The results obtained are generalized to n-quasigroups for any n ≥ 3. In conclusion, simple corollaries are given on the share of polynomially complete quasigroups among all quasigroups, and on the cycle structure of row and column permutations in Cayley tables for quasigroups that are not polynomially complete.
Негізгі сөздер
Авторлар туралы
A. Galatentko
Lomonosov Moscow State University
Хат алмасуға жауапты Автор.
Email: agalat@msu.ru
Ресей, Leninskie Gory 1, Moscow, 119991
A. Pankrat’ev
Lomonosov Moscow State University
Email: agalat@msu.ru
Ресей, Leninskie Gory 1, Moscow, 119991
S. Rodin
Lomonosov Moscow State University
Email: agalat@msu.ru
Ресей, Leninskie Gory 1, Moscow, 119991
Қосымша файлдар
