Polynomially Complete Quasigroups of Prime Order
- Authors: Galatentko A.V.1, Pankrat’ev A.E.1, Rodin S.B.1
-
Affiliations:
- Lomonosov Moscow State University
- Issue: Vol 57, No 5 (2018)
- Pages: 327-335
- Section: Article
- URL: https://journals.rcsi.science/0002-5232/article/view/234100
- DOI: https://doi.org/10.1007/s10469-018-9505-6
- ID: 234100
Cite item
Abstract
We formulate a polynomial completeness criterion for quasigroups of prime order, and show that verification of polynomial completeness may require time polynomial in order. The results obtained are generalized to n-quasigroups for any n ≥ 3. In conclusion, simple corollaries are given on the share of polynomially complete quasigroups among all quasigroups, and on the cycle structure of row and column permutations in Cayley tables for quasigroups that are not polynomially complete.
About the authors
A. V. Galatentko
Lomonosov Moscow State University
Author for correspondence.
Email: agalat@msu.ru
Russian Federation, Leninskie Gory 1, Moscow, 119991
A. E. Pankrat’ev
Lomonosov Moscow State University
Email: agalat@msu.ru
Russian Federation, Leninskie Gory 1, Moscow, 119991
S. B. Rodin
Lomonosov Moscow State University
Email: agalat@msu.ru
Russian Federation, Leninskie Gory 1, Moscow, 119991
Supplementary files
