Associators and Commutators in Alternative Algebras
- 作者: Kleinfeld E.1, Shestakov I.P.2,3
-
隶属关系:
- Aff1
- Sobolev Institute of Mathematics
- Universidade de São Paulo
- 期: 卷 58, 编号 4 (2019)
- 页面: 322-326
- 栏目: Article
- URL: https://journals.rcsi.science/0002-5232/article/view/234148
- DOI: https://doi.org/10.1007/s10469-019-09553-z
- ID: 234148
如何引用文章
详细
It is proved that in a unital alternative algebra A of characteristic ≠ 2, the associator (a, b, c) and the Kleinfeld function f(a, b, c, d) never assume the value 1 for any elements a, b, c, d ∈ A. Moreover, if A is nonassociative, then no commutator [a, b] can be equal to 1. As a consequence, there do not exist algebraically closed alternative algebras. The restriction on the characteristic is essential, as exemplified by the Cayley–Dickson algebra over a field of characteristic 2.
作者简介
E. Kleinfeld
Aff1
Email: shestak@ime.usp.br
美国, Reno, NV, 89503-1719
I. Shestakov
Sobolev Institute of Mathematics; Universidade de São Paulo
编辑信件的主要联系方式.
Email: shestak@ime.usp.br
俄罗斯联邦, pr. Akad. Koptyuga 4, Novosibirsk, 630090; São Paulo-SEP, 05315-970
补充文件
