Algebras of Distributions of Binary Isolating Formulas for Quite o-Minimal Theories
- Autores: Emel’yanov D.Y.1,2, Kulpeshov B.S.3,2,4, Sudoplatov S.V.5,1,6,2
-
Afiliações:
- Novosibirsk State Technical University
- Institute of Mathematics and Mathematical Modeling, Ministry of Education and Science RK
- International Information Technologies University
- Kazkh-British Technical University
- Sobolev Institute of Mathematics
- Novosibirsk State University
- Edição: Volume 57, Nº 6 (2019)
- Páginas: 429-444
- Seção: Article
- URL: https://journals.rcsi.science/0002-5232/article/view/234110
- DOI: https://doi.org/10.1007/s10469-019-09515-5
- ID: 234110
Citar
Resumo
Algebras of distributions of binary isolating formulas over a type for quite o-minimal theories with nonmaximal number of countable models are described. It is proved that an isomorphism of these algebras for two 1-types is characterized by the coincidence of convexity ranks and also by simultaneous satisfaction of isolation, quasirationality, or irrationality of those types. It is shown that for quite o-minimal theories with nonmaximum many countable models, every algebra of distributions of binary isolating formulas over a pair of nonweakly orthogonal types is a generalized commutative monoid.
Sobre autores
D. Emel’yanov
Novosibirsk State Technical University; Institute of Mathematics and Mathematical Modeling, Ministry of Education and Science RK
Autor responsável pela correspondência
Email: dima-pavlyk@mail.ru
Rússia, pr. Marksa 20, Novosibirsk, 630073; ul. Pushkina 125, Alma-Ata, 050010
B. Kulpeshov
International Information Technologies University; Institute of Mathematics and Mathematical Modeling, Ministry of Education and Science RK; Kazkh-British Technical University
Email: dima-pavlyk@mail.ru
Cazaquistão, Manas str. 34/1, Alma-Ata, 050040; ul. Pushkina 125, Alma-Ata, 050010; ul. Tole bi 59, Alma-Ata, 050000
S. Sudoplatov
Sobolev Institute of Mathematics; Novosibirsk State Technical University; Novosibirsk State University; Institute of Mathematics and Mathematical Modeling, Ministry of Education and Science RK
Email: dima-pavlyk@mail.ru
Rússia, pr. Akad. Koptyuga 4, Novosibirsk, 630090; pr. Marksa 20, Novosibirsk, 630073; ul. Pirogova 1, Novosibirsk, 630090; ul. Pushkina 125, Alma-Ata, 050010
Arquivos suplementares
