Strong Decidability and Strong Recognizability
- Авторлар: Maksimova L.L.1,2, Yun V.F.1,2
-
Мекемелер:
- Sobolev Institute of Mathematics
- Novosibirsk State University
- Шығарылым: Том 56, № 5 (2017)
- Беттер: 370-385
- Бөлім: Article
- URL: https://journals.rcsi.science/0002-5232/article/view/234054
- DOI: https://doi.org/10.1007/s10469-017-9459-0
- ID: 234054
Дәйексөз келтіру
Аннотация
Extensions of Johansson’s minimal logic J are considered. It is proved that families of negative and nontrivial logics and a series of other families are strongly decidable over J. This means that, given any finite list Rul of axiom schemes and rules of inference, we can effectively verify whether the logic with axioms and schemes, J + Rul, belongs to a given family. Strong recognizability over J is proved for known logics Neg, Gl, and KC as well as for logics LC and NC and all their extensions.
Негізгі сөздер
Авторлар туралы
L. Maksimova
Sobolev Institute of Mathematics; Novosibirsk State University
Хат алмасуға жауапты Автор.
Email: lmaksi@math.nsc.ru
Ресей, pr. Akad. Koptyuga 4, Novosibirsk, 630090; ul. Pirogova 1, Novosibirsk, 630090
V. Yun
Sobolev Institute of Mathematics; Novosibirsk State University
Email: lmaksi@math.nsc.ru
Ресей, pr. Akad. Koptyuga 4, Novosibirsk, 630090; ul. Pirogova 1, Novosibirsk, 630090
Қосымша файлдар
