Strong Decidability and Strong Recognizability


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Extensions of Johansson’s minimal logic J are considered. It is proved that families of negative and nontrivial logics and a series of other families are strongly decidable over J. This means that, given any finite list Rul of axiom schemes and rules of inference, we can effectively verify whether the logic with axioms and schemes, J + Rul, belongs to a given family. Strong recognizability over J is proved for known logics Neg, Gl, and KC as well as for logics LC and NC and all their extensions.

Авторлар туралы

L. Maksimova

Sobolev Institute of Mathematics; Novosibirsk State University

Хат алмасуға жауапты Автор.
Email: lmaksi@math.nsc.ru
Ресей, pr. Akad. Koptyuga 4, Novosibirsk, 630090; ul. Pirogova 1, Novosibirsk, 630090

V. Yun

Sobolev Institute of Mathematics; Novosibirsk State University

Email: lmaksi@math.nsc.ru
Ресей, pr. Akad. Koptyuga 4, Novosibirsk, 630090; ul. Pirogova 1, Novosibirsk, 630090

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Springer Science+Business Media, LLC, part of Springer Nature, 2017