Algebras of Distributions for Binary Formulas in Countably Categorical Weakly o-Minimal Structures
- Authors: Emel’yanov D.Y.1,2, Kulpeshov B.S.2,3, Sudoplatov S.V.1,2,4,5
-
Affiliations:
- Novosibirsk State University
- Institute of Mathematics and Mathematical Modeling, Ministry of Education and Science RK
- International Information Technologies University
- Sobolev Institute of Mathematics
- Novosibirsk State Technical University
- Issue: Vol 56, No 1 (2017)
- Pages: 13-36
- Section: Article
- URL: https://journals.rcsi.science/0002-5232/article/view/234019
- DOI: https://doi.org/10.1007/s10469-017-9424-y
- ID: 234019
Cite item
Abstract
Algebras of distributions for binary isolating formulas, generalized commutative monoid. Algebras of distributions for binary isolating formulas over a type for countably categorical weakly o-minimal theories are described, and the generalized commutative property of an algebra of distributions for binary isolating formulas over a pair of types for countably categorical weakly o-minimal theories is characterized in terms of convexity rank.
About the authors
D. Yu. Emel’yanov
Novosibirsk State University; Institute of Mathematics and Mathematical Modeling, Ministry of Education and Science RK
Author for correspondence.
Email: dima-pavlyk@mail.ru
Russian Federation, ul. Pirogova 1, Novosibirsk, 630090; ul. Pushkina 125, Alma-Ata, 050010
B. Sh. Kulpeshov
Institute of Mathematics and Mathematical Modeling, Ministry of Education and Science RK; International Information Technologies University
Email: dima-pavlyk@mail.ru
Kazakhstan, ul. Pushkina 125, Alma-Ata, 050010; Manas str. 34A/Zhandosov str. 8A, Alma-Ata, 050040
S. V. Sudoplatov
Novosibirsk State University; Institute of Mathematics and Mathematical Modeling, Ministry of Education and Science RK; Sobolev Institute of Mathematics; Novosibirsk State Technical University
Email: dima-pavlyk@mail.ru
Russian Federation, ul. Pirogova 1, Novosibirsk, 630090; ul. Pushkina 125, Alma-Ata, 050010; pr. Akad. Koptyuga 4, Novosibirsk, 630090; pr. Marksa 20, Novosibirsk, 630073
Supplementary files
