Degrees of Autostability Relative to Strong Constructivizations for Boolean Algebras
- Авторлар: Bazhenov N.A.1,2,3
-
Мекемелер:
- Sobolev Institute of Mathematics
- Novosibirsk State University
- Kazan (Volga Region) Federal University
- Шығарылым: Том 55, № 2 (2016)
- Беттер: 87-102
- Бөлім: Article
- URL: https://journals.rcsi.science/0002-5232/article/view/233976
- DOI: https://doi.org/10.1007/s10469-016-9381-x
- ID: 233976
Дәйексөз келтіру
Аннотация
It is proved that for every computable ordinal α, the Turing degree 0(α) is a degree of autostability of some computable Boolean algebra and is also a degree of autostability relative to strong constructivizations for some decidable Boolean algebra. It is shown that a Harrison Boolean algebra has no degree of autostability relative to strong constructivizations. It is stated that the index set of decidable Boolean algebras having degree of autostability relative to strong constuctivizations is ∏11-complete.
Авторлар туралы
N. Bazhenov
Sobolev Institute of Mathematics; Novosibirsk State University; Kazan (Volga Region) Federal University
Хат алмасуға жауапты Автор.
Email: bazhenov@math.nsc.ru
Ресей, pr. Akad. Koptyuga 4, Novosibirsk, 630090; ul. Pirogova 2, Novosibirsk, 630090; ul. Kremlevskaya 18, Kazan, 420008
Қосымша файлдар
