Comparison of Satellite and Ground-Based Measurements of Tropospheric Ozone Columns in the Vicinity of St. Petersburg

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The monitoring of tropospheric ozone in world science has recently received considerable attention since ozone in the troposphere is both a greenhouse and a pollutant gas. It also plays an important role in various chemical and photochemical processes. Ground-based measurements can be used to assess the quality and to validate satellite measurements of the global ozone distribution. The time series of ozone tropospheric columns in the 0-8 km layer derived from spectral measurements of the IASI satellite instrument using two different algorithms (IASI_LATMOS and IASI_LISA), as well as from joint measurements by the IASI and GOME-2 instruments (IASI-GOME2) were compared to ground-based measurements using the Bruker IFS 125HR Fourier spectrometer at the NDACC St. Petersburg site for 2009–2021. IASI_LISA and IASI-GOME2 on average overestimate ground-based ozone measurements by 9.8 and 5.1%, respectively, while there is no bias between the IASI_LATMOS and FTIR data. The standard deviations of the differences between ground measurements and the IASI_LISA and IASI_LATMOS data do not exceed 12–13%; for the IASI-GOME2 data they are 24.5%. Ground-based and satellite measurements agree better in spring and summer. Ground-based and IASI_LATMOS demonstrate a statistically significant negative trend in the ozone columns in the 0–8 km layer in the vicinity of St. Petersburg for the period 2012–2021, amounting to –0.71 ± 0.35% per year and –0.60 ± 0.21% per year, respectively.

作者简介

Ya. Virolainen

St. Petersburg University

编辑信件的主要联系方式.
Email: yana.virolainen@spbu.ru
Russia, 199034, St. Petersburg, 7-9 Universitetskaya Emb

G. Nerobelov

St. Petersburg University; St. Petersburg Federal Research Center, Russian Academy of Sciences–Scientific Research Centre for Ecological Safety
of the Russian Academy of Sciences

Email: yana.virolainen@spbu.ru
Russia, 199034, St. Petersburg, 7-9 Universitetskaya Emb; Russia, 197110, St. Petersburg, 18 Korpusnaya str

A. Polyakov

St. Petersburg University

Email: yana.virolainen@spbu.ru
Russia, 199034, St. Petersburg, 7-9 Universitetskaya Emb

参考

  1. Виролайнен Я.А., Тимофеев Ю.М., Поберовский А.В., Еременко М., Дюфор Г. Определение содержания озона в различных слоях атмосферы с помощью наземной Фурье-спектрометрии // Изв. РАН. Физика атмосферы и океана. 2015. Т. 51. № 2. С. 191–200.
  2. Виролайнен Я.А., Ионов Д.В., Поляков А.В. Анализ результатов многолетних измерений содержания озона в тропосфере на станции СПбГУ в Петергофе // Изв. РАН. Физика атмосферы и океана. 2023. Т. 59. № 3. С. 336–345.
  3. Boynard A., Hurtmans D., Garane K., Goutai F., Hadji-Lazaro J., Koukouli M.E., Wespes C., Vigouroux C., Keppens A., Pommereau J.-P., Pazmino A., Balis D., Loyola D., Valks P., Sussmann R., Smale D., Coheur P.-F., Clerbaux C. Validation of the IASI FORLI/EUMETSAT ozone products using satellite (GOME-2), ground-based (Brewer–Dobson, SAOZ, FTIR) and ozonesonde measurements // Atmos. Meas. Tech. 2018. V. 11. № 9. P. 5125–5152.
  4. Clerbaux C., Boynard A., Clarisse L., George M., Hadji-Lazaro J., Herbin H., Hurtmans D., Pommier M., Razavi A., Turquety S., Wespes C., Coheur P.-F. Monitoring of atmospheric composition using the thermal infrared IASI/MetOp sounder // Atmos. Chem. Phys. 2009. № 9. P. 6041–6054.
  5. Cuesta J., Eremenko M., Liu X., Dufour G., Cai Z., Höpfner M., von Clarmann T., Sellitto P., Foret G., Gaubert B., Beekmann M., Orphal J., Chance K., Spurr R., Flaud J.-M. Satellite observation of lowermost tropospheric ozone by multispectral synergism of IASI thermal infrared and GOME-2 ultraviolet measurements over Europe // Atmos. Chem. Phys. 2013. V. 13: № 19. P. 9675–9693.
  6. Dufour G., Eremenko M., Griesfeller A., Barret B., LeFlochmoën E., Clerbaux C., Hadji-Lazaro J., Coheur P.-F., Hurtmans D. Validation of three different scientific ozone products retrieved from IASI spectra using ozonesondes // Atmos. Mes. Tech. 2012. V. 5. № 3. P. 611–630.
  7. Dufour G., Eremenko M., Cuesta J., Doche C., Foret G., Beekmann M., Cheiney A., Wang Y., Cai Z., Liu Y., Takigawa M., Kanaya Y., Flaud J.-M. Springtime daily variations in lower-tropospheric ozone over east Asia: the role of cyclonic activity and pollution as observed from space with IASI // Atmos. Chem. Phys. 2015. V. 15. № 18. P. 10839–10856.
  8. Fioletov V.E., Labow G., Evans R., Hare E.W., Köhler U., McElroy C.T., Miyagawa K., Redondas A., Savvastiouk V., Shalamyansky A.M., Staehelin J., Vanicek K., Weber M. Performance of the ground-based total ozone network assessed using satellite data // J. Geoph. Res. 2008. V. 113: D14313.
  9. García O.E., Schneider M., Redondas A., González Y., Hase F., Blumenstock T., Sepúlveda E. Investigating the long-term evolution of subtropical ozone profiles applying ground-based FTIR spectrometry // Atmos. Meas. Tech. 2012. V. 5. № 11. P. 2917–2931.
  10. Gardiner T., Forbes A., de Mazière M., Vigouroux C., Mahieu E., Demoulin P., Velazco V., Notholt J., Blumenstock T., Hase F., Kramer I., Sussmann R., Stremme W., Mellqvist J., Strandberg A., Ellingsen K., Gauss M. Trend analysis of greenhouse gases over Europe measured by a network of ground-based remote FTIR instruments // Atmos. Chem. Phys. V. 8. № 22. P. 6719–6727.
  11. Gaudel A., Cooper O.R, Ancellet G., Barret B., Boynard A., Burrows, J.P. Clerbaux C., Coheur P.-F., Cuesta J., Cuevas E., Doniki S., Dufour G., Ebojie F., Foret G., Garcia O., Granados-Muñoz M.J., Hannigan J.W., Hase F., Hassler B., Huang G., Hurtmans D., Jaffe D., Jones N., Kalabokas P., Kerridge B., Kulawik S., Latter B., Leblanc T., Le Flochmoën E., Lin W., Liu J., Liu X., Mahieu E., McClure-Begley A., Neu J.L., Osman M., Palm M., Petetin H., Petropavlovskikh I., Querel R., Rahpoe N., Rozanov A., Schultz M.G., Schwab J., Siddans R., Smale D., Steinbacher M., Tanimoto H,, Tarasick D.W., Thouret V., Thompson A.M., Trickl T., Weatherhead E., Wespes C., Worden H.M., Vigouroux C., Xu X., Zeng G., Ziemke J. Tropospheric Ozone Assessment Report: Present-day distribution and trends of tropospheric ozone relevant to climate and global atmospheric chemistry model evaluation // Elementa: Science of the Anthropocene. 2018. V. 39. № 6.
  12. Hase H., Hannigan J.W., Coffey M.T., Goldman A., Hoepfner M., Jones N.B., Rinsland C.P., Wood S.W. Intercomparison of retrieval codes used for the analysis of high-resolution, ground-based FTIR measurements // J. Quant. Spectrosc. Radiat. Transfer 2004. V. 87. № 1. P. 25–52.
  13. Hubert D., Heue K.-P., Lambert J.-C., Verhoelst T., Allaart M., Compernolle S., Cullis P.D., Dehn A., Félix C., Johnson B.J., Keppens A., Kollonige D.E., Lerot C., Loyola D., Maata M., Mitro S., Mohamad M., Piters A., Romahn F., Selkirk H.B., da Silva F.R., Stauffer R.M., Thompson A.M., Veefkind J.P., Vömel H., Witte J.C., Zehner C. TROPOMI tropospheric ozone column data: geophysical assessment and comparison to ozonesondes, GOME-2B and OMI // Atmos. Meas. Tech. 2021. V. 14. № 12. P. 7405–7433.
  14. IPCC: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change / Eds. Stocker T.F., Qin D., Plattner G.-K., Tignor M., Allen S.K., Boschung J., Nauels A., Xia Y., Bex V., Midgley P.M. NY (USA): Cambridge University Press, Cambridge, United Kingdom and New York, 2013. 1535 p.
  15. Liu X, Chance K, Sioris C.E., Spurr R.J.D., Kurosu T.P., Martin R.V., Newchurch M.J. Ozone profile and tropospheric ozone retrievals from the Global Ozone Monitoring Experiment: Algorithm description and validation // J. Geophys. Res. 2005. V. 110. № D20. P. D006240.
  16. Loew A., Bell W., Brocca L., Bulgin C.E., Burdanowitz J., Calbet X., Donner R.V., Ghent D., Gruber A., Kaminski T., Kinzel J., Klepp C., Lambert J.-C., Schaepman-Strub G., Schröder M., Verhoelst T. Validation practices for satellite-based Earth observation data across communities // Rev. Geophys. 2017. V. 55. P. 779–817.
  17. Polyakov A., Poberovsky A., Makarova M., Virolainen Y., Timofeyev Y., Nikulina A. Measurements of CFC-11, CFC-12, and HCFC-22 total columns in the atmosphere at the St. Petersburg site in 2009–2019 // Atmos. Meas. Tech. 2021. V. 14. № 8. P. 5349–5368.
  18. Rodgers C.D. Inverse Methods for Atmospheric Sounding: Theory and Practice. Singapore: World Scientific Publishing, 2000. 243 p.
  19. Szopa S., Naik V., Adhikary B., Artaxo P., Berntsen T., Collins W.D., Fuzzi S., Gallardo L, Kiendler-Scharr A., Klimont Z., Liao H., Unger N., Zanis P. Short-Lived Climate Forcers. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate // Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. 2021. P. 817–922.
  20. Trickl T., Giehl H., Neidl F., Perfahl M., Vogelmann H. Three decades of tropospheric ozone lidar development at Garmisch-Partenkirchen, Germany // Atmos. Meas. Tech. 2020. V. 13. № 11. P. 6357–6390.
  21. Vigouroux C., Blumenstock T., Coffey M., Errera Q., García O., Jones N.B., Hannigan J.W., Hase F., Liley B., Mahieu E., Mellqvist J., Notholt J., Palm M., Persson G., Schneider M., Servais C., Smale D., Thölix L., De Mazière M.: Trends of ozone total columns and vertical distribution from FTIR observations at eight NDACC stations around the globe // Atmos. Chem. Phys. 2015. V. 15. № 6. P. 2915–2933.
  22. Wespes C., Hurtmans D., Emmons L.K., Safieddine S., Clerbaux C., Edwards D.P., Coheur P.-F. Ozone variability in the troposphere and the stratosphere from the first 6 years of IASI observations (2008–2013) // Atmos. Chem. Phys. 2016. V. 16. № 9. P. 5721–5743.
  23. World Meteorological Organization (WMO). WMO Provisional State of the Global Climate 2022. WMO: 2022 https://library.wmo.int/doc_num.php?explnum_id=11359. 26 p.
  24. Wu S., Mickley L.J., Jacob D.J., Logan J.A., Yantosca R.M., Rind D. Why are there large differences between models in global budgets of tropospheric ozone? // J. Geophys. Res. 2007. V. 112. № D05 P. 302.
  25. Ziemke J.R., Chandra S., Duncan B.N., Froidevaux L., Bhartia P.K., Levelt P.F. Waters J.W. Tropospheric ozone determined from Aura OMI and MLS: Evaluation of measurements and comparison with the Global Modeling Initiative’s Chemical Transport Model // J. Geophys. Res. 2006. V. 111. № D19. P. 303.

补充文件

附件文件
动作
1. JATS XML
2.

下载 (377KB)
3.

下载 (224KB)
4.

下载 (296KB)


Creative Commons License
此作品已接受知识共享署名-非商业性使用-禁止演绎 4.0国际许可协议的许可。
##common.cookie##