RELATION OF CO2 CONCENTRATION TO METEOROLOGICAL CONDITIONS AND ATMOSPHERIC WAVE PROCESSES NEAR EAST ANTARCTICA

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The present study analyses the dependence of CO2 concentration on meteorological parameters and wave processes in the atmosphere. This analysis was based on data obtained during the 68-th Russian Antarctic Expedition on the Scientific expedition ship “Akademik Fedorov” (December 2022 — February 2023). Common spectral maxima in cross-spectra of temporal variations of meteorological parameters (atmospheric pressure, temperature and wind speed) and CO2 concentration in a wide range of periods (from ten minutes to a day) were analyzed. The oscillations with a discrete set of periods from ten minutes to a day were detected in the frequency spectra and cross-spectra of fluctuations of meteorological parameters and turbulent fluxes of momentum and heat, A possible mechanism of formation of the observed frequency spectra of variations of meteorological parameters and CO2 concentration is proposed. It is connected with the influence of the nonlinear process of advection of internal waves in the varying wind caused by solar tides (diurnal and semidiurnal) and the total field of internal waves from their regular sources (solar terminator) and irregular sources (meteorological fronts, orography, jet currents, convection and etc).

Sobre autores

E. Marchuk

Obukhov Institute of Atmospheric Physics RAS

Autor responsável pela correspondência
Email: murchuk-ekaterin@mail.ru
Pizhevsky per., 3, bld. 1, Moscow, 119017 Russia

I. Chunchuzov

Obukhov Institute of Atmospheric Physics RAS

Email: igor.chunchuzov@gmail.com
Moscow, Russia

I. Repina

Obukhov Institute of Atmospheric Physics RAS; Lomonosov Moscow State University, Research Computing Center

Email: murchuk-ekaterin@mail.ru
Moscow, Russia; Moscow, Russia

B. Ivanov

Arctic and Antarctic Research Institute; Saint-Petersburg State University

Email: murchuk-ekaterin@mail.ru
St. Petersburg, Russia; St. Petersburg, Russia

A. Bezgreshnov

Arctic and Antarctic Research Institute

Email: murchuk-ekaterin@mail.ru
St. Petersburg, Russia

Bibliografia

  1. Гармаш С.В., Линьков Е.М., Петрова Л.Н., Швед Г.М. Возбуждение колебаний атмосферы сейсмогравитационными колебаниями Земли // Изв. АН СССР. Физика атмосферы и океана. 1989. Т. 25. № 12. C. 1290–1299.
  2. Иванов В. В., Алексеев В. А., Алексеева Т. А., Колдунов Н. В., Репина И. А., Смирнов А. В. Арктический ледяной покров становится сезонным? // Исследование Земли из космоса. 2013. № 4. С. 50–65.
  3. Карпова Н.В., Петрова Л.Н., Швед Г.М. Колебания атмосферы и земной поверхности с устойчивыми частотами в диапазонах периодов 0.7–1.5 и 2.5– // Изв. РАН. Физика атмосферы и океана. 2004. Т. 40. № 1. C. 13–24.
  4. Линьков Е.М. Петрова Л.Н., Зурошвили Д.Д. Сейсмогравитационные колебания Земли и связанные с ними возмущения атмосферы // Докл. АН СССР. 1989. Т. 306. № 2. C. 314–317.
  5. Малинин В.Н. Общая океанология. Часть I. Физические процессы. СПб.: изд. РГГМИ, 1998. 341 с.
  6. Марчук Е.А., Чунчузов И.П., Попов О.Е., Репина И.А., Козлов И.Е., Сильвестрова К.П., Осадчиев А.А., Степанова Н.Б., Йоханнессен У.М. Исследование характеристик внутренних волн в Карском Море и их влияния на турбулентные потоки тепла и импульса над морской поверхностью // Изв. РАН. Физика атмосферы и океана. 2024. Т. 60. № 5. С. 582–600.
  7. Репина И.А. Методы определения турбулентных потоков над морской поверхностью. М.: ИКИ РАН, 2007. 36 с.
  8. Репина И.А. Эксперементальные исследования взаимодействия атмосферы и океана в нестационарных условиях. Дис. … д-ра физ.-мат. наук. М., 2011. 318 с.
  9. Репина И.А., Артамонов А.Ю., Варенцов М.И., Хавина Е.М. Взаимодействие атмосферы и океана в Северном Ледовитом океане по данным измерений в летне-осенний период // Российская Арктика. 2019. № 7. С. 49–61.
  10. Станция Мирный. Гидрометеорологический режим района. Режимно-справочное пособие. СПб.: ААНИИ, 2022. 208 с.
  11. Станция Прогресс. Гидрометеорологический режим района. Режимно-справочное пособие. СПб: ААНИИ, 2021. 183 с.
  12. Тимачев В.Ф., Иванов Б.В., Репина И.А. Теплообмен между атмосферой и ледовым покровом // Труды ААНИИ. 2008. В. 447. С. 140–155.
  13. Хуторова О.Г., Тептин Г.М. Исследование мезомасштабных волновых процессов приземном слое по синхронным измерениям атмосферных параметров и примесей // Изв. РАН. Физика атмосферы и океана. 2009. Т. 45. № 5. С. 588–596.
  14. Afraimovich E.L., Edemskiy I.K., Voeykov S.V., Yasukevich Yu.V., Zhivetiev I.V. Spatio-temporal structure of the wave packets generated by the solar terminator // Adv. Space Res. 2009. V. 44. № 7. P. 824–835.
  15. Bacmeister J.T., Eckermann S.D., Newman P., Lait L., Chan K.R., Loewenstein M., Proffitt M.H., Gary B. Stratospheric Horizontal Wavenumber Spectra of Winds, Potential Temperature, and Atmospheric Tracers Observed by High-Altitude Aircraft // J. Geophys. Res. 1996. V. 101. № D5. P. 9441–9470.
  16. Bezyk Y., Górka M., Sówka I., Nęcki J., Strąpoć D. Temporal dynamics and controlling factors of CO2 and CH4 variability in the urban atmosphere of Wroclaw, Poland // Sci. of the Total Envi. 2003. V. 893. P. 164771.
  17. Butterworth B.J., Miller S.D. Air‐sea exchange of carbon dioxide in the Southern Ocean and Antarctic marginal ice zone // Geophys. Res. Lett. 2016. V. 43. № 13. С. 7223–7230.
  18. Caughey S.J., Readings C.J. An observation of waves and turbulence in the earth’s boundary layer // Boundary-Layer Meteorol. 1975. V. 9. P. 279–296.
  19. Canadell J.G., Monteiro P.M.S., Costa M.H., Cotrim da Cunha L., Cox P.M., Eliseev A.V., Henson S., Ishii M., Jaccard S., Koven C., Lohila A., Patra P.K., Piao S., Rogelj J., Syampungani S., Zaehle S., Zickfeld K. Global carbon and other biogeochemical cycles and feedbacks // Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press. Р. 673–816.
  20. Chunchuzov I.P., Perepelkin V.G., Kulichkov S.N., Gorchakov G.I., Kallistratova M.A., Dzhola A.V., Lyu J., Teng P., Yang Y., Lin W., Li Q., Sun Y. Influence of Internal Gravity Waves on Meteorological Fields and Gas Constituents near Moscow and Beijing // Izves. Atm. and Ocen. Phys. 2017. V. 53. № 5. P. 524–538.
  21. Chunchuzov I.P., Kulichkov S.N., Popov O.E., Perepelkin V.G., Zaitseva D.V., Somsikov V.M. Wave Disturbances of Atmospheric Pressure and Wind Speed in the Troposphere Associated with the Solar Terminator // Izves. Atm. and Ocen. Phys. 2021. V. 57. № 6. P. 581–593.
  22. Chunchuzov I., Chkhetiani O., Kulichkov S., Popov O., Belan B., Fofonov A., Ivlev G., Kozlov A. Statistical characteristics of mesoscale fluctuations of wind velocity, temperature, and gas concentrations obtained from aircraft measurements in the troposphere of the Arctic region // J. Atm. Sci. 2024. V. 81. № 1. P. 105–124.
  23. Cox G.F.N., Weeks W.F. Equations for determining the gas and brine volumes in sea-ice samples // J. Glaciol. 1983. V. 29. P. 306–316.
  24. Dai A., Wang J. Diurnal and Semidiurnal Tides in Global Surface Pressure Fields // J. Atmos. Sci. 1999. V. 56. P. 3874–3891.
  25. Eckermann D.S., Gibson-Wilde D.E., Backmeister J.T. Gravity wave perturbations of minor constituents: A parcel advection methodology // J. Atmos. Sci. 1998. V. 55. № 24. P. 3521–3539.
  26. Fairall C.W., Bradley E.F., Hare J.E., Grachev A.A., Edson J.B. Bulk parameterization of air–sea fluxes: Updates and verification for the COARE algorithm // J. Climate. 2003. V. 16. P. 571–591.
  27. Gao Z., Chen L., Gao Y. Air-sea carbon fluxes and their controlling factors in the Prydz Bay in the Antarctic // Acta Ocean. Sinica. 2008. V. 27. № 3. P. 136–146.
  28. Gossard E.E., Hooke W.H. Waves in the atmosphere. New York: Elsevier, 1975. 456 pp.
  29. Golden K.M., Ackley S.F., Lytle V.I. The percolation phase transition in sea ice // Science. 1998 V. 282. P. 2238–2241.
  30. Gulev S.K., Thorne P.W., Ahn J., Dentener F.J., Domingues C.M., Gerland S., Gong D., Kaufman D.S., Nnamchi H.C., Quaas J., Rivera J.A., Sathyendranath S., Smith S.L., Trewin B., von Schuckmann K., Vose R.S., 2021: Changing State of the Climate System. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change // Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2021. Р. 287–422.
  31. Hedlin M.A.H, de Groot-Hedlin C.D., Forbes J.M., Drob D.P. Solar terminator waves in surface pressure observations // Geophys. Res. Lett. 2018. V. 45. P. 5213–5219.
  32. Jähne B. Air-sea gas exchange // Elements of Physical Oceanography: A Derivative of the Encyclopedia of Ocean Sciences. Academic Press, 2009. P. 160–169
  33. Keeling C.D., Adams J.A., Ekdahl C.A., Guenther P.R. Atmospheric carbon dioxide variations at the South Pole // Tellus. 1976. V. 28. P. 552–564.
  34. Kettle H., Merchant C.J., Jeffery C.D., Filipiak M.J., Gentemann C.L. The impact of diurnal variability in sea surface temperature on the central Atlantic air-sea CO2 flux // Atmos. Chem. Phys. 2009. V. 9. P. 529–541.
  35. IPCC: Climate Change 2023: Synthesis Report, Summary for Policymakers. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (Core Writing Team, H. Lee and J. Romero). Switzerland, Geneva, 2023. 34 p.
  36. Lubin D., Wittenmyer R.A., Bromwich D.H., Marshall G.J. Antarctic Peninsula mesoscale cyclone variability and climatic impacts influenced by the SAM // Geophys. Res. Lett. 2008. V. 35. L02808.
  37. Massom R.A., Stammerjohn S.E. Antarctic Sea ice change and variability — Physical and ecological implications // Polar Sci. 2010. V. 4. № 2. P. 149–186.
  38. Newell R.E., Wu Z.-X., Zhu Y., Hu W., Browell E.V., Browell Ed.V., Gregory G.L., Sachse G.W., Collins J.E., Collins J.K., Kelly K.K., Kelly Keith A., Lui S.C., Lui S. Vertical fine-scale atmospheric structure measured from NASA DC-8 during PEM-West // J. Geophys. Res. 1996. V. 101. № D1. P. 1943–1960.
  39. Nieuwstadt F.T.M., Van Dop H. Atmospheric turbulence and air pollution modeling. D. Reidel Publish. Comp. Dordrecht: Holland/Boston/London, 1981. 350 р.
  40. Parkinson C.L. A 40-y record reveals gradual Antarctic Sea ice increases followed by decreases at rates far exceeding the rates seen in the Arctic // Proc. Natl. Acad. Sci. U. S. A. 2019. V. 116. № 29. P. 14414–14423.
  41. Pathakoti M., Gaddamidi S., Gharai B., Sudhakaran Syamala P., Rao P.V.N., Choudhury S.B., Raghavendra K.V., Dadhwal V.K. Influence of meteorological parameters on atmospheric CO2 at Bharati, the Indian Antarctic research station // Polar Res. 2018. V. 37. P. 1442072.
  42. Peacock T., Haller G. Lagrangian coherent structures // Physics Today. 2013. V. 41. № 2. P. 41.
  43. Prentice I.C., Farquhar G.D., Fasham M.J.R., Goulden M.L., Heimann M. The carbon cycle and atmospheric carbon dioxide // Climate change 2001: the scientific basis, Intergovernmental panel on climate change, 2001.
  44. Skinner L., Menviel L., Broadfield L., Gottschalk J., Greaves M. Southern Ocean convection amplified past Antarctic warming and atmospheric CO2 rise during Heinrich Stadial 4 // Commun. Earth & Envir. 2020. V. 1. №. 1. P. 23.
  45. Sun Y., Bian L., Tang J., Gao Z., Lu C., Schnell R.C. CO2 monitoring and background mole fraction at Zhongshan Station, Antarctica // Atmosph. 2014. V. 5. P. 686–698.
  46. Seabrook J., Whiteway J. Influence of Mountains on Arctic Tropospheric Ozone // J. Geophys. Res. 2016. V. 121. № 4. P. 1935–1942.
  47. Serafimovich A., Nappo C., Foken T. Impact of gravity waves on the turbulent exchange above a forest site. // Conference paper, 9th Symp. on Boundary Layers and Turbulence, Helmholtz-Zentrum, Potsdam. 2010.
  48. Serreze M.C., Barry R.G. Processes and impacts of Arctic amplification: A research synthesis // Glob. Planet. Change. 2011. V. 77. № 1–2. P. 85–96.
  49. Somsikov V.M., Troitskii B.V. Generation of disturbances in the atmosphere during the passage of solar terminator // Geomagn. Aeron. 1975. V. 15. № 5. P. 856–860.
  50. Somsikov V.M. Solar terminator and dynamic phenomena in the atmosphere: A review // Geomagn. Aeron. 2011. V. 51. № 6. P. 707–719.
  51. Søren R., Bendtsen J., Delille B., Dieckmann G.S., Glud R.N., Kennedy H., Mortensen J., Papadimitriou S., Thomas D.N., Tison J.L. Sea ice contribution to the air–sea CO2 exchange in the Arctic and Southern Oceans // Tellus B: Chemical and Physical Meteorology. 2011. V. 63. № 5. P. 823–830.
  52. Shved G.M., Petrova L.N., Polyakova O.S. Penetration of the Earth’s free oscillations into the atmosphere // Ann. Geophys. 2000. V. 18. P. 566–572.
  53. Smirnov S.E. Frequency and time analysis of the sunrise effect in the electric field of the atmospheric surface layer // Vestn. Kamchatskoi Reg. Assots. Uchebno-Nauchnyi Tsentr, Fiz. — Mat. Nauki. 2016. V. 4. № 15. P. 86–91.
  54. Van Dam B.R., Lopes C.C., Polsenaere P., Price R. M., Rutgersson A., Fourqurean J. W. Water temperature control on CO 2 flux and evaporation over a subtropical seagrass meadow revealed by atmospheric eddy covariance // Limnol. Oceanogr. 2021. V. 66. P. 510–527.
  55. Watts J., Bell T.G., Anderson K., Butterworth B.J., Miller S., Else B., Shutler J. Impact of sea ice on air-sea CO2 exchange — A critical review of polar eddy covariance studies // Progress in Oceanography. 2022. V. 201. P. 102741.
  56. Wei Yuan, Jiyao Xu, Yongfu Wu, Jianchun Bian, Hongbin Chen. Vertical wavenumber spectra of atmospheric ozone measured from ozonesonde observations // Advances in Space Research. 2009. V. 43. P. 1364–1371.
  57. Whiteman C. D., Bian X. Solar semidiurnal tides in the troposphere: Detection by radar profiles // Bull. Amer. Meteor. Soc. 1996. V. 77. P. 529–542.
  58. WMO Greenhouse Gas Bulletin. 2023. V. 19. 11 p. https://data.aad.gov.au/aadc/mapcat/display_map.cfm?map_id=14300 (дата обращения: 22.06.2024). https://gml.noaa.gov/dv/iadv/index.php?code=zep (дата обращения: 10.10.2024).

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML


Creative Commons License
Este artigo é disponível sob a Licença Creative Commons Atribuição–NãoComercial–SemDerivações 4.0 Internacional.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».