PHOTOCHEMICAL/ CHEMICAL EQUILIBRIUM OF ATMOSPHERIC TRACE GASES: A REVIEW OF ANALYSIS METHODS AND APPLICATIONS

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The paper presents a review of studies in which the equilibrium of chemically active atmospheric gases is used in the retrieval of unmeasurable (poorly measured) characteristics of the troposphere, stratosphere and mesosphere – lower thermosphere altitudes. We summarize our studies that develop mathematically correct analysis of trace gas equilibrium which involves numerical modeling, including global 3D chemical transport modeling.

Авторлар туралы

M. Kulikov

Gaponov-Grekhov Institute of Applied Physics, Russian Academy of Sciences

Email: kulm@ipfran.ru
Nizhny Novgorod, Russia

M. Belikovich

Gaponov-Grekhov Institute of Applied Physics, Russian Academy of Sciences

Nizhny Novgorod, Russia

A. Chubarov

Gaponov-Grekhov Institute of Applied Physics, Russian Academy of Sciences

Nizhny Novgorod, Russia

S. Dementyeva

Gaponov-Grekhov Institute of Applied Physics, Russian Academy of Sciences

Nizhny Novgorod, Russia

A. Feigin

Gaponov-Grekhov Institute of Applied Physics, Russian Academy of Sciences

Nizhny Novgorod, Russia

Әдебиет тізімі

  1. Куликов М.Ю., Фейгин А.М. Автоматизированное построение базовых динамических моделей атмосферных фотохимических систем на примере химического механизма RADM2 // Известия ВУЗов. Радиофизика. 2014. Т. 57. № 7. С. 531–542.
  2. Avalione L.M., Toohey D.W. Tests of halogen photochemistry using in situ measurements of CIO and BrO in the lower polar stratosphere // J. Geophys. Res. 2001. V. 106. № D10. P. 10411–1042.
  3. Benton A.K., Langridge J.M., Ball S.M., Bloss W.J., Dall'Osio M., Nemitz E., Harrison R.M., Jones R.L. Night-time chemistry above London: measurements of NO3 and N2O5 from the BT Tower // Atmos. Chem. Phys. 2010. V. 10. P. 9781–9795.
  4. Belikovich M.V., Kulikov M.Y., Grygalashyly M., Sonnemann G.R., Ermakova T.S., Nechaev A.A., Feigin A.M. Ozone chemical equilibrium in the extended mesopause under the nighttime conditions // Ad V. Space Res. 2018. V. 61. № 1. P. 426–432.
  5. Belikovich M.V., Kulikov M.Y., Nechaev A.A., Feigin A.M. Evaluation of the Atmospheric Minor Species Measurements: a Priori Statistical Constraints Based on Photochemical Modeling // Radiophys. Quantum Electron. 2019. V. 61. P. 574–588.
  6. Brown S.S., Stark H., Ryerson T.B., Williams E.J., Nicks D.K.Jr., Trainer M., Fehsenfeld F.C., Ravishankara A.R. Nitrogen oxides in the nocturnal boundary layer: Simultaneous in situ measurements of NO3, N2O5, NO2, NO, and O3 // J. Geophys. Res. 2003. V. 108. № D9. 4299.
  7. Cantrell C.A., Mauldin L., Zondlo M. et al. Steady state free radical budgets and ozone photochemistry during TOPSE // J. Geophys. Res. 2003. V. 108. № D4. 8361.
  8. Chameides W. Tropospheric odd nitrogen and the atmospheric water vapor cycle // J. Geophys. Res. 1975. V. 84. № C10. P. 4989–4996.
  9. Crawford J., Davis D., Chen G. et al. Photostationary state analysis of the NO2-NO system based on airborne observations from the western and central North Pacific // J. Geophys. Res. 1996. V. 101. № D1. P. 2053–2072.
  10. Crowley J.N., Schuster G., Pouvesle N., et al. Nocturnal nitrogen oxides at a rural mountain-site in south-western Germany // Atmos. Chem. Phys. 2010. V. 10. P. 2795–2812.
  11. Evans W.F.J., Llewellyn E.J. Atomic hydrogen concentrations in the mesosphere and the hydroxyl emissions // J. Geophys. Res. 1973. V. 78. P. 323–326.
  12. Evans W.F.J., McDade I.C., Yuen J., Llewellyn E.J. A rocket measurement of the O2 infrared atmospheric (0–0) band emission in the dayglow and a determination of the mesospheric ozone and atomic oxygen densities // Can. J. Phys. 1988. V. 66. P. 941–946.
  13. Feigin A.M., Konovalov I.B., Mol'kov Ya.I. Towards understanding nonlinear nature of atmospheric photochemistry: Essential dynamic model of the mesospheric photochemical system // J. Geophys. Res. 1998. V. 103. P. 25447–25460.
  14. Fichtelmann B., Sonnemann G. Non-linear behavior in the photochemistry of minor constituents in the upper mesosphere // Annales Geophysicae. 1992. V. 10. P. 719–728.
  15. Funke B., Lopez-Puertas M., von Clarmann T. et al. Retrieval of stratospheric NOx from 5.3 and 6.2 μm nonlocal thermodynamic equilibrium emissions measured by Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on Envisat // J. Geophys. Res. 2005. V. 110. D09302.
  16. Fytterer T., von Savigny C., Mlynczak M., Simhuber M. Model results of OH airglow considering four different wavelength regions to derive night-time atomic oxygen and atomic hydrogen in the mesopause region // Atmos. Chem. Phys. 2019. V. 19. P. 1835–1851.
  17. Good R.E. Determination of atomic oxygen density from rocket borne measurements of hydroxyl airglow // Planet. Space Sci. 1976. V. 24. P. 389–395.
  18. Grygalashvyly M., Sonnemann G.R., Hartogh P. Long-term behavior of the concentration of the minor constituents in the mesosphere – A model study // Atmos. Chem. Phys. 2009. V. 9. P. 2779–2792.
  19. Grygalashvyly M., Sonnemann G.R., Libken F.-J. et al. Hydroxyl layer: Mean state and trends at midlatitudes // J. Geophys. Res.-Atmos. 2014. V. 119. P. 12391–12419.
  20. Grygalashvyly M. Several notes on the OH* layer // Ann. Geophys. 2015. V. 33. P. 923–930.
  21. Grygalashvyly M., Strelnikov B., Strelnikova I. et al. Chemical heat derived from rocket-borne WADIS-2 experiment // Earth Planets Space. 2024. V. 76. 180.
  22. Guan J., Solomon S., Madronich S., Kinnison D. Inferring the photolysis rate of NO2 in the stratosphere based on satellite observations // Atmos. Chem. Phys. 2023. V. 23. P. 10413–10422.
  23. Hauchecorne A., Bertaux J.L., Dalaudier F. et al. Response of tropical stratospheric O3, NO2 and NO3 to the equatorial Quasi-Biennial Oscillation and to temperature as seen from GOMOS/ENVISAT // Atmos. Chem. Phys. 2010. V. 10. P. 8873–8879.
  24. Kalogerakis K.S., Matsiev D., Sharma R.D., Wintersteiner P.P. Resolving the mesospheric nighttime 4.3 μm emission puzzle: Laboratory demonstration of new mechanism for OH(v) relaxation // Geophys. Res. Lett. 2016. V. 43. P. 8835–8843.
  25. Kalogerakis K.S. A previously unrecognized source of the O2 atmospheric band emission in earth’s nightglow // Science Advances. 2019. V. 5. № 3. eau9255.
  26. Kawa S.R., Fahey D.W., Solomon S. et al. Interpretation of aircraft measurements of NOy, ClOy and O3 in the lower stratosphere // J. Geophys. Res. 1990. V. 95. № D11. P. 18597–18609.
  27. Kondo Y., Matthews W.A., Almedieu P. et al. Diurnal variation of nitric oxide at 32 km: Measurements and interpretation // J. Geophys. Res. 1988. V. 93. № D3. P. 2451–2460.
  28. Kondo Y., Zierels H., Koike M. et al. Reactive nitrogen over the Pacific Ocean during PEM-West A // J. Geophys. Res. 1996. V. 10. № D1. P. 1809–1828.
  29. Konovalov I.B., Feigin A.M. Toward an understanding of the nonlinear nature of atmospheric photochemistry: Origin of the complicated dynamic behaviour of the mesospheric photochemical system // Nonlinear Processes in Geophysics. 2000. V. 7. P. 87–104.
  30. Kowalewski S., von Savigny C., Palm M., et al. On the impact of the temporal variability of the collisional quenching process on the mesospheric OH emission layer: a study based on SD-WACCM4 and SABER // Atmos. Chem. Phys. 2014. V. 14. P. 10193–10210.
  31. Kulikov M.Yu., Feigin A.M. Reactive-diffusion waves in the mesospheric photochemical system // Ad V. Space Res. 2005. V. 35. № 11. P. 1992–1998.
  32. Kulikov M.Yu., Feigin A.M., Sonnemann G.R. Retrieval of the vertical distribution of chemical components in the mesosphere from simultaneous measurements of ozone and hydroxyl distributions // Radiophys. Quantum Electron. 2006a. V. 49. P. 683–691.
  33. Kulikov M.Yu., Gashturi A.P. Influence of the vertical advection on the nonlinear dynamic properties of the upper-mesosphere photochemistry // Radiophys. Quantum Electron. 2006b. V. 49. P. 949–955.
  34. Kulikov M.Yu. Theoretical investigation of the influence of a quasi 2-day wave on nonlinear photochemical oscillations in the mesopause region // J. Geophys. Res. 2007. V. 112. D02305.
  35. Kulikov M.Yu., Feigin A.M., Sonnemann G.R. Retrieval of water vapor profile in the mesosphere from satellite ozone and hydroxyl measurements by the basic dynamic model of mesospheric photochemical system // Atmos. Chem. Phys. 2009a. V. 9. P. 8199–8210.
  36. Kulikov M.Yu., Mukhin D.N., Feigin A.M. Bayesian strategy of accuracy estimation for characteristics retrieved from experimental data using base dynamic models of atmospheric photochemical systems // Radiophys. Quantum Electron. 2009b. V. 52. P. 618–626.
  37. Kulikov M.Yu., Vadimova O.L., Ignatov S.K., Feigin A.M. The mechanism of non-linear photochemical oscillations in the mesopause region // Nonlinear Processes in Geophysics. 2012. V. 19. P. 501–512.
  38. Kulikov M.Yu., Belikovich M.V., Grygalashvyly M. et al. Daytime ozone loss term in the mesopause region // Annales Geophysicae. 2017. V. 35. P. 677–682.
  39. Kulikov M.Yu., Nechaev A.A., Belikovich M.V. et al. Technical note: Evaluation of the simultaneous measurements of mesospheric OH, HO2, and O3 under a photochemical equilibrium assumption – a statistical approach // Atmos. Chem. Phys. 2018a. V. 18. P. 7453–7471.
  40. Kulikov M.Yu., Belikovich M.V., Grygalashvyly M. et al. Nighttime ozone chemical equilibrium in the mesopause region // J. Geophys. Res. 2018b. V. 123. P. 3228–3242.
  41. Kulikov M.Yu., Nechaev A.A., Belikovich M.V. et al. Boundary of nighttime ozone chemical equilibrium in the mesopause region from SABER data: Implications for derivation of atomic oxygen and atomic hydrogen // Geophys. Res. Lett. 2019a. V. 46. № 2. P. 997–1004.
  42. Kulikov M.Yu., Belikovich M.V. Nighttime O(1D) distributions in the mesopause region derived from SABER data // Annales Geophysicae. 2020. V. 38. P. 815–822.
  43. Kulikov M.Yu., Belikovich M.V., Feigin A.M. Analytical investigation of the reaction-diffusion waves in the mesopause photochemistry // J. Geophys. Res. 2020. V. 125. e2020JD033480.
  44. Kulikov M.Yu., Belikovich M.V., Feigin A.M. The 2-day photochemical oscillations in the mesopause region: the first experimental evidence? // Geophys. Res. Lett. 2021. V. 48. e2021GL092795.
  45. Kulikov M.Yu., Belikovich M.V., Grygalashvyly M. et al. Retrieving daytime distributions of O, H, OH, HO2, and chemical heating rate in the mesopause region from satellite observations of ozone and OH* volume emission: The evaluation of the importance of the reaction H+O3→O2+OH in the ozone balance // Ad V. Space Res. 2022a. V. 69. № 9. P. 3362–3373.
  46. Kulikov M.Yu., Belikovich M.V., Grygalashvyly M. et al. The revised method for retrieving daytime distributions of atomic oxygen and odd-hydrogens in the mesopause region from satellite observations // Earth, Planets and Space. 2022b. V. 74. P. 44.
  47. Kulikov M.Yu., Belikovich M.V., Chubarov A.G. et al. Boundary of nighttime ozone chemical equilibrium in the mesopause region: improved criterion of determining the boundary from satellite data // Ad V. Space Res. 2023a. V. 71. № 6. P. 2770–2780.
  48. Kulikov M.Yu., Belikovich M.V., Chubarov A.G. et al. Boundary of nighttime ozone chemical equilibrium in the mesopause region: long-term evolution determined using 20-year satellite observations // Atmos. Chem. Phys. 2023b. V. 23. P. 14593–14608.
  49. Kulikov M.Yu., Belikovich M.V., Chubarov A.G. et al. Technical note: Nighttime OH and HO2 chemical equilibria in the mesosphere–lower thermosphere // Atmos. Chem. Phys. 2024a. V. 24. P. 10965–10983.
  50. Kulikov M.Yu., Belikovich M.V., Chubarov A.G. et al. Retrieval of Nighttime Distributions of Mesosphere–Lower Thermosphere Characteristics from Satellite Data // Izvestiya, Atmospheric and Oceanic Physics. 2024b. V. 60. № 1. P. 74–86.
  51. Llewellyn E.J., McDade I.C., Moorhouse P., Lockerbie M.D. Possible reference models for atomic oxygen in the terrestrial atmosphere // Ad V. Space Res. 1993. V. 13. P. 135–144.
  52. Llewellyn E.J., McDade I.C. A reference model for atomic oxygen in the terrestrial atmosphere // Ad V. Space Res. 1996. V. 18. P. 209–226.
  53. Marchand M., Bekki S., Lefevre F., Hauchecorne A. Temperature retrieval from stratospheric O3 and NO3 GOMOS data // Geophys. Res. Lett. 2007. V. 34. L24809.
  54. Marsh D.R., Smith A.K., Mlynczak M.G., Russell J.M. SABER observations of the OH Meinel airglow variability near the mesopause // J. Geophys. Res. 2006. V. 111. A10505.
  55. Martinez M., Perner D., Hackenthal E.-M. et al. NO3 at Helgoland during the NORDEX campaign in October 1996 // J. Geophys. Res. 2000. V. 105. № D18. P. 22685–22695.
  56. Massie S.T., Hunten D.M. Stratospheric eddy diffusion coefficients from tracer data // J. Geophys. Res. 1981. V. 86. № C10. P. 9859–9868.
  57. McDade I.C., Llewellyn E.J., Harris F.R. Atomic oxygen concentrations in the lower auroral thermosphere // Ad V. Space Res. 1985. V. 5. № 7. P. 229–232.
  58. McDade I.C., Llewellyn E.J. Mesospheric oxygen atom densities inferred from night-time OH Meinel band emission rates // Planet. Space Sci. 1988. V. 36. P. 897–905.
  59. McLaren R., Wojtal P., Majonis D. et al. NO3 radical measurements in a polluted marine environment: links to ozone formation // Atmos. Chem. Phys. 2010. V. 10. P. 4187–4206.
  60. Millan L., Wang S., Livesey N. et al. Stratospheric and mesospheric HO2 observations from the Aura Microwave Limb Sounder // Atmos. Chem. Phys. 2015. V. 15. P. 2889–2902.
  61. Mlynczak M.G., Solomon S. Middle atmosphere heating by exothermic chemical reactions involving odd-hydrogen species // Geophys. Res. Lett. 1991. V. 18. P. 37–40.
  62. Mlynczak M.G., Solomon S. A detailed evaluation of the heating efficiency in the middle atmosphere // J. Geophys. Res. 1993. V. 98. P. 10517–10541.
  63. Mlynczak M.G., Marshall B.T., Martin-Torres F.J. et al. Sounding of the Atmosphere using Broadband Emission Radiometry observations of daytime mesospheric O2(a1Δg) 1.27 μm emission and derivation of ozone, atomic oxygen, and solar and chemical energy deposition rates // J. Geophys. Res. 2007. V. 112. D15306.
  64. Mlynczak M.G., Hunt L.A., Mast J.C. et al. Atomic oxygen in the mesosphere and lower thermosphere derived from SABER: Algorithm theoretical basis and measurement uncertainty // J. Geophys. Res. 2013a. V. 118. P. 5724–5735.
  65. Mlynczak M.G., Hunt L.H., Mertens C.J. et al. Radiative and energetic constraints on the global annual mean atomic oxygen concentration in the mesopause region // J. Geophys. Res. 2013b. V. 118. P. 5796–5802.
  66. Mlynczak M.G., Hunt L.A., Marshall B.T. et al. Atomic hydrogen in the mesopause region derived from SABER: Algorithm theoretical basis, measurement uncertainty, and results // J. Geophys. Res. 2014. V. 119. P. 3516–3526.
  67. Mlynczak M.G., Hunt L.A., Russell J.M., Marshall B.T. Updated SABER night atomic oxygen and indications for SABER ozone and atomic hydrogen // Geophys. Res. Lett. 2018. V. 45. P. 5735–5741.
  68. Nechaev A.A., Ermakova T.S., Kulikov M.Y. Determination of the Trace-Gas Concentrations at the Altitudes of the Lower and Middle Mesosphere from the Time Series of Ozone Concentration // Radiophys. Quantum Electron. 2016. V. 59. P. 546–559.
  69. Nikoukar R., Swenson G.R., Liu A.Z., Kamalabadi F. On the variability of mesospheric OH emission profiles // J. Geophys. Res. 2007. V. 112. D19109.
  70. Panka P.A., Kutepov A.A., Kalogerakis K.S. et al. Resolving the mesospheric nighttime 4.3 μm emission puzzle: Comparison of the CO23) and OH(ν) emission models // Atm. Chem. Phys. 2017. V. 17. P. 9751–9760.
  71. Panka P.A., Kutepov A.A., Rezac L. et al. Atomic oxygen retrieved from the SABER 2.0- and 1.6-μm radiances using new first-principles nighttime OH(ν) model // Geophys. Res. Lett. 2018. V. 45. P. 5798–5803.
  72. Panka P.A., Kutepov A.A., Zhu Y. et al. Simultaneous retrievals of nighttime O(3P) and total OH densities from satellite observations of Meinel band emissions // Geophys. Res. Lett. 2021. V. 48. e2020GL091053.
  73. Pendleton W.R., Baker K.D., Howlett L.C. Rocket-based investigations of O(3P), O2(a1Δg) and OH*(ν=1,2) during the solar eclipse of 26 February 1979 // J. Atm. Terr. Phys. 1983. V. 45. № 7. P. 479–491.
  74. Penkett S.A., Monks P.S., Carpenter L.J. et al. Relationships between ozone photolysis rates and peroxy radical concentrations in clean marine air over the Southern Ocean // J. Geophys. Res. 1997. V. 102. № D11. P. 12805–12817.
  75. Penkett S.A., Reeves C.E., Bandy B.J. et al. Comparison of calculated and measured peroxide data collected in marine air to investigate prominent features of the annual cycle of ozone in the troposphere // J. Geophys. Res. 1998. V. 103. № D11. P. 13377–13388.
  76. Platt U., Perner D., Pütz H.W. Simultaneous measurement of atmospheric CH2O, O3, and NO2 by differential optical absorption // J. Geophys. Res. 1979. V. 84. № C10. P. 6329–6335.
  77. Pyle J.A., Zavody A.M., Harries J.E. et al. Derivation of OH concentration from satellite infrared measurements of NO2 and HNO3 // Nature. 1983. V. 305. P. 690–692. https://doi.org/10.1038/305690a0
  78. Pyle J.A., Zavody A.M. The derivation of hydrogen containing radical concentrations from satellite data sets // Q. J.R. Meteorol. Soc. 1985. V. 111. P. 993–1012.
  79. Pickett H.M., Peterson D.B. Comparison of measured stratospheric OH with prediction // J. Geophys. Res. 1996. V. 101. № D11. P. 16789–16796.
  80. Russell J.P., Lowe R.P. Atomic oxygen profiles (80–94 km) derived from Wind Imaging Interferometer/Upper Atmospheric Research Satellite measurements of the hydroxyl airglow: 1. Validation of technique // J. Geophys. Res. 2003. V. 108. № D21. 4662.
  81. Russell J.P. Atomic oxygen profiles (80 to 115 km) derived from Wind Imaging Interferometer/Upper Atmospheric Research Satellite measurements of the hydroxyl and green line airglow: Local time–latitude dependence // J. Geophys. Res. 2005. V. 110. № D15. D15305.
  82. Scinocca J.F., McFarlane N.A., Lazare M. et al. The CCCma third generation AGCM and its extension into the middle atmosphere // Atmos. Chem. Phys. 2008. V. 8. P. 7055–7074.
  83. Shaposhnikov D.S., Hartogh P., Sonnemann G.R., Grygalashvyly M. Ozone Chemical Equilibrium Near the Martian Nighttime OH* Layer: Observational Constraints // Earth Planets Space. 2025. V. 77. 123.
  84. Sharma R.D., Wintersteiner P.P., Kalogerakis K.S. A new mechanism for OH vibrational relaxation leading to enhanced CO2 emissions in the nocturnal mesosphere // Geophys. Res. Lett. 2015. V. 42. P. 4639–4647.
  85. Siskind D.E., Marsh D.R., Mlynczak M.G. et al. Decreases in atomic hydrogen over the summer pole: Evidence for dehydration from polar mesospheric clouds? // Geophys. Res. Lett. 2008. V. 35. L13809.
  86. Siskind D.E., Mlynczak M.G., Marshall T. et al. Implications of odd oxygen observations by the TIMED/SABER instrument for lower D region ionospheric modeling // J. Atmos. Sol. Terr. Phys. 2015. V. 124. P. 63–70.
  87. Smith A.K., Marsh D.R., Mlynczak M.G., Mast J.C. Temporal variations of atomic oxygen in the upper mesosphere from SABER // J. Geophys. Res. 2010. V. 115. D18309.
  88. Sobanski N., Tang M.J., Thieser J. et al. Chemical and meteorological influences on the lifetime of NO3 at a semi-rural mountain site during PARADE // Atmos. Chem. Phys. 2016. V. 16. P. 4867–4883.
  89. Sonnemann G.R., Hartogh P., Berger U., Grygalashvyly M. Hydroxyl layer: trend of number density and intra-annual variability // Annales Geophysicae. 2015. V. 33. P. 749–767.
  90. Sonnemann G., Fichtelmann B. Subharmonics, cascades of period doubling, and chaotic behavior of photochemistry of the mesopause region // J. Geophys. Res. 1997. V. 102. № D1. P. 1193–1203.
  91. Sonnemann G.R., Feigin A.M., Mol'kov Y.I. On the influence of diffusion upon the nonlinear behavior of the photochemistry of the mesopause region // J. Geophys. Res. 1999. V. 104. № D23. P. 30591–30603.
  92. Sonnemann G.R., Grygalashvyly M. On the two-day oscillations and the day-to-day variability in global 3-D-modeling of the chemical system of the upper mesosphere/mesopause region // Nonlinear Processes in Geophysics. 2005. V. 12. № 5. P. 691–705.
  93. Stevens M.H., Conway R.R., Englert C.R. et al. PMCs and the water frost point in the Arctic summer mesosphere // Geophysical Research Letters. 2001. V. 28. № 23. P. 4449–4452.
  94. Stockwell W.R., Kirchner F., Kuhn M., Seefeld S. A new mechanism for regional atmospheric chemistry modeling // J. Geophys. Res. 1997. V. 102. № D22. P. P. 25847–25879.
  95. Sumińska-Ebersoldt O., Lehmann R., Wegner T. et al. ClOOCl photolysis at high solar zenith angles: analysis of the RECONCILE self-match flight // Atmos. Chem. Phys. 2012. V. 12. P. 1353–1365.
  96. Summers M.E., Conway R.R., Englert C.R. et al. Discovery of a water vapor layer in the Arctic summer mesosphere: Implications for polar mesospheric clouds // Geophysical Research Letters. 2001. V. 28. № 18. P. 3601–3604.
  97. Swenson G.R., Gardner C.S. Analytical models for the responses of the mesospheric OH* and Na layers to atmospheric gravity waves // J. Geophys. Res. 1998. V. 103. № D6. P. 6271–6294.
  98. Swenson G.R., Vargas F., Jones M. et al. Intra-annual variation of eddy diffusion (kzz) in the MLT, from SABER and SCIAMACHY atomic oxygen climatologies // J. Geophys. Res. 2021. V. 126. e2021JD035343.
  99. Thomas R.J. Atomic hydrogen and atomic oxygen density in the mesosphere region: Global and seasonal variations deduced from Solar Mesosphere Explorer near-infrared emissions // J. Geophys. Res. 1990. V. 95. P. 16457–16476.
  100. Webster C.R., May R.D., Toumi R. et al. Active nitrogen partitioning and the nighttime formation of N2O5 in the stratosphere: Simultaneous in situ measurements of NO, NO2, HNO3, O3, and N2O using the BLISS diode laser spectrometer // J. Geophys. Res. 1990. V. 95. № D9. P. 13851–13866.
  101. Wetzel G., Oelhaf H., Kirner O. et al. Diurnal variations of reactive chlorine and nitrogen oxides observed by MIPAS-B inside the January 2010 Arctic vortex // Atmos. Chem. Phys. 2012. V. 12. P. 6581–6592.
  102. Xu J., Gao H., Smith A.K., Zhu Y. Using TIMED/SABER nightglow observations to investigate hydroxyl emission mechanisms in the mesopause region // J. Geophys. Res. 2012. V. 117. № D2. D02301.
  103. Xu J., Gao H., Smith A.K., Zhu Y. Using TIMED/SABER nightglow observations to investigate hydroxyl emission mechanisms in the mesopause region // J. Geophys. Res. 2012. V. 117. D02301.
  104. Zhu Y. and Kaufmann M. Atomic oxygen abundance retrieved from SCIAMACHY hydroxyl nightglow measurements // Geophys. Res. Lett. 2018. V. 45. P. 9314–9322.
  105. Zhu Y. and Kaufmann M. Consistent nighttime atomic oxygen concentrations from O2 A-band, O(1S) green-Line, and OH airglow measurements as performed by SCIAMACHY // Geophys. Res. Lett. 2019. V. 46. P. 8536–8545.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML


Creative Commons License
Бұл мақала лицензия бойынша қол жетімді Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».