THE DIFFERENCE IN THE PROGNOSTIC POTENTIAL OF TROPOSPHERIC PREDICTORS OF STRATOSPHERIC SUDDEN WARMING IN DIFFERENT PHASES OF ENSO ACCORDING TO IDEALIZED NUMERICAL EXPERIMENTS

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The stratospheric dynamic and its variability play one of the key roles in the tasks of weather forecasting on a sub-seasonal scale in winter season in the Northern Hemisphere. The stratospheric influence on tropospheric dynamics is most pronounced during sudden stratospheric warming (SSW), when in many cases it is possible to trace the spread of dynamic disturbances from the stratosphere to the underlying troposphere, down to the Earth’s surface. Therefore, a more complete understanding of the formation of SSW events will assist to clarify the forecast of anomalies of synoptic activity with an advance time of 10 to 30 days. In this paper based on the data of idealized numerical modeling we analyze the differences in the characteristics of the stratospheric polar vortex (SPV), such as the intensity and frequency of the SSW at different phases of the El Niño – Southern Oscillation (ENSO). The results of the study allow to explain the mechanisms of formation of these differences and show that the predictability of SSW in El Niño conditions is higher than in La Niña conditions.

About the authors

A. V. Panasik

Moscow Institute of Physics and Technology

Email: panasik.av@phystech.edu
Dolgoprudny, Russia

Yu. A. Zyulyaeva

Shirshov Institute of Oceanology, Russian Academy of Sciences;HSE University

Moscow, Russia; Moscow, Russia

D. A. Sobaeva

Moscow Institute of Physics and Technology; Shirshov Institute of Oceanology, Russian Academy of Sciences

Dolgoprudny, Russia; Moscow, Russia

S. K. Gulev

Shirshov Institute of Oceanology, Russian Academy of Sciences

Moscow, Russia

References

  1. Антохина О.Ю., Гочаков А.В., Зоркальцева О.С., Антохин П.Н., Кручиатников В.Н. Опрокидывание волн Россби в стратосфере. Часть I. Климатология и долговременная изменчивость // Оптика атмосферы и океана. 2024. Т. 37. № 5. С. 415–422. https://doi.org/10.15372/AO020240509
  2. Мохов И.И. Аномальные зимы в регионах Северной Евразии в разных фазах явлений Эль-Нинью // ДАН. Науки о Земле. 2020. Т. 493. № 2. С. 93–98.
  3. Мохов И.И., Тимажев А.В. Оценки предсказуемости климатических аномалий в российских регионах в связи с явлениями Эль-Нинью // ДАН. 2015. Т. 464. № 6. С. 722–722.
  4. Коленникова М.А., Варuгин П.Н., Гущина Д.Ю. Влияние Эль-Нинью на стратосферу Арктики по данным моделей CMIP5 и реанализа // Метеорология и гидрология. 2021. № 6. С. 5–23.
  5. Baldwin M.P. et al. Sudden stratospheric warmings // Rev. Geophys. 2021. V. 59. № 1. e2020RG000708.
  6. Baldwin M.P., Dunkerton T.J. Stratospheric harbingers of anomalous weather regimes // Science. 2001. V. 294. № 5542. P. 581–584.
  7. Baldwin M.P. et al. Stratospheric memory and skill of extended-range weather forecasts // Science. 2003. V. 301. № 5633. P. 636–640.
  8. Bell C.J. et al. Stratospheric communication of El Niño teleconnections to European winter // J. Climate. 2009. V. 22. № 15. P. 4083–4096.
  9. Brönnimann S. Impact of El Niño–southern oscillation on European climate // Rev. Geophys. 2007. V. 45. № 3. RG3003.
  10. Butler A.H. et al. A sudden stratospheric warming compendium // Earth Sys. Sci. 2017. V. 9. № 1. P. 63–76.
  11. Butler A.H. et al. Defining sudden stratospheric warmings // Bul. Am. Meteorol. Soc. 2015. V. 96. № 11. P. 1913–1928.
  12. Butler A.H., Polvani L.M. El Niño, La Niña, and stratospheric sudden warmings: A reevaluation in light of the observational record // Geophys. Res. Lett. 2011. V. 38. № 13. L13807.
  13. Camp C.D., Tung K.K. Stratospheric polar warming by ENSO in winter: A statistical study // Geophys. Res. Lett. 2007. V. 34. № 4. L04809.
  14. Chwat D. et al. Which sudden stratospheric warming events are most predictable? // J. Geophys. Res. Atmos. 2022. V. 127. № 18. e2022JD037521.
  15. Domeisen D.I.V. et al. Seasonal predictability over Europe arising from El Niño and stratospheric variability in the MPI-ESM seasonal prediction system // J. Clim. 2015. V. 28. № 1. P. 256–271.
  16. Domeisen D.I.V., Garfinkel C.I., Butler A.H. The teleconnection of El Niño Southern Oscillation to the stratosphere // Rev. Geophys. 2019. V. 57. № 1. P. 5–47.
  17. Garfinkel C.I., Hartmann D.L., Sassi F. Tropospheric precursors of anomalous Northern Hemisphere stratospheric polar vortices // J. Clim. 2010. V. 23. № 12. P. 3282–3299.
  18. Garfinkel C.I. et al. Why might stratospheric sudden warmings occur with similar frequency in El Niño and La Niña winters? // J. Geophys. Res. Atmos. 2012. V. 117. D19106.
  19. Garfinkel C.I., Hartmann D.L. Different ENSO teleconnections and their effects on the stratospheric polar vortex // J. Geophys. Res. Atmos. 2008. V. 113. D18114.
  20. Horel J.D., Wallace J.M. Planetary-scale atmospheric phenomena associated with the Southern Oscillation // Mon. Weath. Rev. 1981. V. 109. № 4. P. 813–829.
  21. Ineson S., Scaife A.A. The role of the stratosphere in the European climate response to El Niño // Nat. Geosci. 2009. V. 2. № 1. P. 32–36.
  22. Kidston J. et al. Stratospheric influence on tropospheric jet streams, storm tracks and surface weather // Nat. Geosci. 2015. V. 8. № 6. P. 433–440.
  23. Kistler R. et al. The NCEP–NCAR 50-year reanalysis: monthly means CD-ROM and documentation // Bul. Am. Meteorol. Soc. 2001. V. 82. № 2. P. 247–268.
  24. Knight J., Scaife A., Bett P.E. et al. Predictability of European Winters 2017/2018 and 2018/2019: Contrasting influences from SNAPSI nudging protocol description from Tropics and stratosphere // Atmos. Sci. Lett. 2021. V. 22. № 1. e1009.
  25. Kodera K., Mukougawa H., Itoh S. Tropospheric impact of reflected planetary waves from the stratosphere // Geophys. Res. Lett. 2008. V. 35. № 16. L16806.
  26. Kolennikova M., Gushchina D. Revisiting the contrasting response of polar stratosphere to the Eastern and Central Pacific El Niños // Atmosphere. 2022. V. 13. № 5. 682.
  27. Manney G., Lawrence Z., Saniec M., Read W.G., Livesey N.J., Lambert A., Froidevaux L., Pumphrey H.C., Schwartz M.J. A minor sudden stratospheric warming with a major impact: Transport and polar processing in the 2014/2015 Arctic winter. // Geophys. Res. Lett. 2015. V. 42. № 18. P. 7808–7816.
  28. Matthias V., Kretschmer M. The influence of stratospheric wave reflection on North American cold spells // Mon. Weath. Rev. 2020. V. 148. № 4. P. 1675–1690.
  29. Mo K.C., Livezey R.E. Tropical-extratropical geopotential height teleconnections during the Northern Hemisphere winter // Mon. Weath. Rev. 1986. V. 114. № 12. P. 2488–2515.
  30. Nath D., Chen W., Zelin C., Pogoreltsev A.I., Wei K. Dynamics of 2013 Sudden Stratospheric Warming event and its impact on cold weather over Eurasia: Role of planetary wave reflection // Sci. Rep. 2016. V. 6. № 1. P. 24174
  31. Plumb R.A. On the three-dimensional propagation of stationary waves // J. Atmos. Sci. 1985. V. 42. № 3. P. 217–229.
  32. Rayner N.A. et al. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century // J. Geophys. Res. Atmos. 2003. V. 108. 4407.
  33. Reynolds R.W. et al. Daily high-resolution-blended analyses for sea surface temperature // J. Clim. 2007. V. 20. № 22. P. 5473–5496.
  34. Sassi F. et al. Effect of El Niño–Southern Oscillation on the dynamical, thermal, and chemical structure of the middle atmosphere // J. Geophys. Res. Atmos. 2004. V. 109. D17108.
  35. Smagorinsky J. The dynamical influence of large-scale heat sources and sinks on the quasi-stationary mean motions of the atmosphere // Quart. J.R. Met. Soc. 1953. V. 79. № 341. P. 342–366.
  36. Sobaeva D., Zyulyaeva Y., Gulev S. ENSO and PDO effect on stratospheric dynamics in Isca numerical experiments // Atmosphere. 2023. V. 14. № 3. 459.
  37. Taguchi M., Hartmann D.L. Increased occurrence of stratospheric sudden warmings during El Niño as simulated by WACCM // J. Clim. 2006. V. 19. № 3. P. 324–332.
  38. Vallis G.K. et al. Isca, v1. 0: A framework for the global modelling of the atmospheres of Earth and other planets at varying levels of complexity // Geosci. Model Dev. 2018. V. 11. № 3. P. 843–859.
  39. Van Loon H., Labitzke K. The Southern Oscillation. Part V: The anomalies in the lower stratosphere of the Northern Hemisphere in winter and a comparison with the quasi-biennial oscillation // Mon. Weather Rev. 1987. V. 115. № 2. P. 357–369.
  40. Waugh D.W., Sobel A.H., Polvani L.M. What is the polar vortex and how does it influence weather? // Bul. Am. Meteorol. Soc. 2017. V. 98. № 1. P. 37–44.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).