INFLUENCE OF THERMAL ROUGHNESS PARAMETERIZATIONS ON THE TURBULENT FLUXES SIMULATIONS BY ATMOSPHERIC SURFACE LAYER MODEL
- Authors: Suiazova V.I1,2,3, Debolskiy A.V1,2,3, Mortikov E.V1,3, Shestakova A.A1,2, Gladskikh D.S1,3,4, Chechin D.G1,2
-
Affiliations:
- Lomonosov Moscow State University, Research Computing Center
- Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences
- Moscow Center for Fundamental and Applied Mathematics
- Gaponov-Grekhov Institute of Applied Physics, Russian Academy of Sciences
- Issue: Vol 61, No 5 (2025)
- Pages: 579-591
- Section: Articles
- URL: https://journals.rcsi.science/0002-3515/article/view/360436
- DOI: https://doi.org/10.7868/S3034648725050047
- ID: 360436
Cite item
Abstract
About the authors
V. I Suiazova
Lomonosov Moscow State University, Research Computing Center; Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences; Moscow Center for Fundamental and Applied Mathematics
Email: v.suiazova@rcc.msu.ru
Moscow, Russia; Moscow, Russia; Moscow, Russia
A. V Debolskiy
Lomonosov Moscow State University, Research Computing Center; Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences; Moscow Center for Fundamental and Applied MathematicsMoscow, Russia; Moscow, Russia; Moscow, Russia
E. V Mortikov
Lomonosov Moscow State University, Research Computing Center; Moscow Center for Fundamental and Applied MathematicsMoscow, Russia; Moscow, Russia
A. A Shestakova
Lomonosov Moscow State University, Research Computing Center; Obukhov Institute of Atmospheric Physics, Russian Academy of SciencesMoscow, Russia; Moscow, Russia
D. S Gladskikh
Lomonosov Moscow State University, Research Computing Center; Moscow Center for Fundamental and Applied Mathematics; Gaponov-Grekhov Institute of Applied Physics, Russian Academy of SciencesMoscow, Russia; Moscow, Russia; Nizhny Novgorod, Russia
D. G Chechin
Lomonosov Moscow State University, Research Computing Center; Obukhov Institute of Atmospheric Physics, Russian Academy of SciencesMoscow, Russia; Moscow, Russia
References
- Володин Е.М. Воспроизведение современного климата моделью климатической системы INMCM60 // Изв. РАН. Физика атмосферы и океана. 2023. Т. 59. № 1. С. 19–26.
- Зилитинкевич С.С. Динамика пограничного слоя атмосферы. Л.: Гидрометеорологическое издательство, 1970. 292 с.
- Казаков А.Л., Лыкосов В.Н. О параметризации взаимодействия атмосферы с подстилающей поверхностью при численном моделировании атмосферных процессов // Труды Западно-Сибирского регионального научно-исследовательского института. 1982. Т. 55. № 55. С. 3–20.
- Репина И.А., Артамонов А.Ю., Капустин И.А., Мольков А.А., Степаненко В.М. Параметр шероховатости мелководных водоемов // Водные ресурсы. 2023. Т. 50. № 5. С. 602–612.
- Чечин Д.Г., Артамонов А.Ю., Бодунков Н.Е., Живоглядов Д.Н., Зайцева Д.В., Калягин М.Ю., Кузнецов Д.Д., Кунащук А.А., Шевченко М.А., Шестакова А.А. Опыт исследования турбулентной структуры атмосферного пограничного слоя с помощью беспилотного летательного аппарата // Изв. РАН. Физика атмосферы и океана. 2021. Т. 57. № 5. С. 602–610.
- Alekseychik P.K., Korrensalo A., Mammarella I., Vesala T., Tuittila E.-S. Relationship between aerodynamic roughness length and bulk sedge leaf area index in a mixed-species boreal mire complex // Geophysical Research Letters. 2017. V. 44. № 11. P. 5836–5843.
- Ando T., Higuchi T., Hotta H., Iwakiri T., Jinno T., Kino K., Takano Y., Toda M., Yamazaki K., Suzuki K. et al. Description of MIROC6 AGCM, CCSR Report № 65. 2021. 137.
- Andreas E.L., Persson P.O. G., Grachev A.A., Jordan R.E., Horst T.W., Guest P.S., Fairall C.W. Parameterizing turbulent exchange over sea ice in winter // J. Hydrometeorology. 2010. V. 11. P. 87–104.
- Barskov K., Chechin D., Drozd I., Artamonov A., Pashkin A., Gavrikov A., Varentsov M., Stepanenko V., Repina I. Relationships Between Second and Third Moments in the Surface Layer Under Different Stratification over Grassland and Urban Landscapes // Boundary Layer Meteorology. 2023. V. 187. P. 311–338.
- Brutsaert W. Evaporation into the atmosphere: theory, history and applications. Dordrecht: Springer, 2013. 299 p.
- Businger J.A., Wyngaard J.C., Izumi Y., Bradley E.F. Flux-profile relationships in the atmospheric surface layer // J. of Atmospheric Sciences. 1971. V. 28. № 2. P. 181–189.
- Cahill A.T., Parlange M.B., Albertson J.D. On the Brutsaert temperature roughness length model for sensible heat flux estimation // Water resources research. 1997. V. 33. № 10. P. 2315–2324.
- Chaney N.W., Herman J.D., Ek M.B., Wood E.F. Deriving global parameter estimates for the Noah land surface model using FLUXNET and machine learning // J. of Geophysical Research: Atmospheres. 2016. V. 121. № 22. P. 13–218.
- Chen F., Zhang Y. On the coupling strength between the land surface and the atmosphere: From viewpoint of surface exchange coefficients // Geophysical Research Letters. 2009. V. 36. № 10. L10404.
- Cox C.J., Gallagher M.R., Shupe M.D., Persson P.O. G., Solomon A., Fairall C.W., Ayers T., Blomquist B., Brooks I.M., Costa D. et al. Continuous observations of the surface energy budget and meteorology over the Arctic sea ice during MOSAiC // Scientific Data. 2023. V. 10. № 1. 519.
- Debolskiy A.V., Mortikov E.V., Glazunov A.V., Lüpkes C. Evaluation of surface layer stability functions and their extension to first order turbulent closures for weakly and strongly stratified stable boundary layer // Boundary-Layer Meteorology. 2023. V. 187. P. 73–93.
- Duynkerke P.G. The roughness length for heat and other vegetation parameters for a surface of short grass // J. of Applied Meteorology and Climatology. 1992. V. 31. № 6. P. 579–586.
- Garratt J.R. The atmospheric boundary layer // Earth-Science Reviews. 1992. V. 37. P. 89–134.
- Grachev A.A., Fairall C.W., Persson P.O.G., Andreas E.L., Guest P.S. Stable boundary-layer scaling regimes: the SHEBA data // Boundary-Layer Meteorology. 2005. V. 116. P. 201–235.
- Grachev A.A., Andreas E.L., Fairall C.W., Guest P.S., Persson P.O.G. Turbulent measurements in the stable atmospheric boundary layer during SHEBA: ten years after // Acta Geophysica. 2008. V. 56. № 1. P. 142–166.
- Gutjahr O., Putrasahan D., Lohmann K., Jungclaus J.H., Storch J.-S., von Brüggemann N., Haak H., Süssel A. Max planck institute earth system model (MPI-ESM1.2) for the high-resolution model intercomparison project (HighResMIP) // Geoscientific Model Development. 2019. V. 12. № 7. P. 3241–3281.
- Kanda M., Kanega M., Kawai T., Moriwaki R., Sugawara H. Roughness lengths for momentum and heat derived from outdoor urban scale models // J. Applied Meteorology and Climatology. 2007. V. 46. № 7. P. 1067–1079.
- Li D., Rigden A., Salvucci G., Liu H. Reconciling the Reynolds number dependence of scalar roughness length and laminar resistance // Geophysical Research Letters. 2017. V. 44. № 7. P. 3193–3200.
- Ma S., Zhou L., Zou H., Li F., Zhu J. Evaluation of thermal roughness schemes in surface heat transfer simulations over grassland in Southeast Tibet // Atmospheric Research. 2022. V. 270. № 106055.
- Mammarella I., Nordbo A., Rannik Ü., Haapanala S., Levula J., Laakso H., Ojala A., Peltola O., Heiskanen J., Pumpanen J. et al. Carbon dioxide and energy fluxes over a small boreal lake in Southern Finland // J. Geophysical Research: Biogeosciences. 2015. V. 120. № 7. P. 1296–1314.
- Mölder M. Parameterization of exchange processes over a barley field // Boundary-Layer Meteorology. 1997. V. 84. P. 341–361.
- Monin A.S., Yaglom A.M. Statistical fluid mechanics, volume II: mechanics of turbulence. Mineola; New York: Dover Publications, 2013. 769 p.
- Owen P.R., Thomson W.R. Heat transfer across rough surfaces // J. Fluid Mechanics. 1963. V. 15. № 3. P. 321–334.
- Parlange J.-Y., Waggoner P.E., Heichel G.H. Boundary layer resistance and temperature distribution on still and flapping leaves: I. Theory and laboratory experiments // Plant Physiology. 1971. V. 48. № 4. P. 437–442.
- Rigden A.J., Salvucci G.D. Evapotranspiration based on equilibrated relative humidity (ETRHEQ): Evaluation over the continental US // Water Resources Research, 2015. V. 51. P. 2951–2973.
- Rigden A., Li D., Salvucci G. Dependence of thermal roughness length on friction velocity across land cover types: A synthesis analysis using AmeriFlux data // Agricultural and Forest Meteorology. 2018. V. 249. 512–519.
- Shupe M.D., Rex M., Blomquist B., Persson P.O.G., Schmale J., Uttal T., Althausen D., Angot H., Archer S., Barrieau L. et al. Overview of the MOSAiC expedition: Atmosphere // Elem. Sci Anth. 2022. V. 10. № 1. 00060.
- Subin Z.M., Riley W.J., Mironov D. An improved lake model for climate simulations: Model structure, evaluation, and sensitivity analyses in CESM1 // J. Advances in Modeling Earth Systems. 2012. V. 4. № 1. M02001.
- Suiazova V.I., Debolskiy A.V., Mortikov E.V. Study of Surface Layer Characteristics in the Presence of Suspended Snow Particles Using Observational Data and Large Eddy Simulation // Izvestiya, Atmospheric and Oceanic Physics. 2024. V. 60. № 2. P. 158–167.
- Sun J., Burns S.P., Delany A.C., Oncley S.P., Horst T.W., Lenschow D.H. Heat Balance in the Nocturnal Boundary Layer during CASES-99 // J. Appl. Meteor. 2003. V. 42. № 11. P. 1649–1666.
- Varentsov A.I., Zilitinkevich S.S., Stepanenko V.M., Tyuryakov S.A., Alekseychik P.K. Thermal Roughness of the Fen Surface // Boundary-Layer Meteorology. 2023. V. 187. № 1. P. 213–227.
- Yaglom A.M., Kader B.A. Heat and mass transfer between a rough wall and turbulent fluid flow at high Reynolds and Peclet numbers // J. Fluid Mechanics. 1974. V. 62. № 3. P. 601–623.
- Zilitinkevich S.S. Non-local turbulent transport: Pollution dispersion aspects of coherent structure of convective flows // WIT Transactions on Ecology and the Environment. 2024. V. 9. P. 53–60.
- Kohonen K.M., Mammarella I., Ojala A., Laakso H., Matilainen T., Salminen T., Levula J., Ala-Könni J., Kolari P. et al. SMEAR II Lake Kuivajärvi meteorology, water quality and eddy covariance / University of Helsinki, Institute for Atmospheric and Earth System Research. 2024. https://doi.org/10.23729/e085f3d1-b18a-46a1-aaa6-cf89bad16d7
- Cox C., Gallagher M., Shupe M., Persson O., Blomquist B., Grachev A.A., Riihimaki L., Kutchenreiter M., Morris V., Solomon A., Brooks I., Costa D., Gottas D., Hutchings J., Osborn J., Morris S., Preusser A., Uttal T. Met City meteorological and surface flux measurements (Level 3 Final), Multidisciplinary Drifting Observatory for the Study of Arctic Climate (MOSAiC). Scientific Data, 2023. 519 p.
- UCAR/NCAR-Earth Observing Laboratory 5 Minute Statistics of ISFF data during CASES-99. Version 1.0. // UCAR/NCAR – Earth Observing Laboratory. 2016. https://doi.org/10.5065/D6ZS2TWW (Accessed 6 Nov. 2024).
Supplementary files



