ASSESSMENT OF THE AREA OF APPLICABILITY OF THE SHALLOW-WATER APPROXIMATION FOR REPRODUCING DISPERSIVE TSUNAMI WAVES

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A practical method has been developed for determining the region of space in which the dispersionless shallow-water approximation is capable of reproducing dispersive tsunami waves with a given accuracy. We propose to evaluate the accuracy by the degree of delay of the dispersive wave packet relative to the front of long waves. The degree of delay is calculated along the wave rays emitted from the center of the source at different azimuth angles. The calculation of rays is implemented on a spherical surface taking into account the bottom relief, which is smoothed to meet the conditions of applicability of the ray theory. The dominant period of tsunami waves is calculated based on the shape of the initial elevation of the water surface in the source taking into account the distribution of ocean depths along each of the rays. The degree of delay of the dispersing wave packet is calculated based on the dominant period and the depth profile along the ray. The operation of the method is demonstrated using the example of two tsunami events on the Central Kuril Islands (Simushir tsunamis of 15.11.2006 and 13.01.2007).

About the authors

M. A. Nosov

Lomonosov Moscow State University; Institute of Marine Geology and Geophysics, Far Eastern Branch of RAS

Email: m.a.nosov@mail.ru
Moscow, Russia; Yuzhno-Sakhalinsk, Russia

A. I. Zarubina

Lomonosov Moscow State University

Moscow, Russia

S. V. Kolesov

Lomonosov Moscow State University; Institute of Marine Geology and Geophysics, Far Eastern Branch of RAS

Moscow, Russia; Yuzhno-Sakhalinsk, Russia

References

  1. Абдалазиз А., Диденкулова И.И., Дутых Д. Денисенко П. Сравнение дисперсионной и бездисперсионной моделей наката длинных волн на берег // Изв. РАН. Физика атмосферы и океана. 2020. Т. 56. № 5. С. 567–574.
  2. Куликов Е.А., Медведев П.П., Лаппо С.С. Регистрация из космоса цунами 26 декабря 2004 г. в Индийском океане // Доклады АН. 2005. Т. 401. № 4. С. 537–542.
  3. Лайтхилл Д. Волны в жидкостях. М.: Мир, 1981. 598 с.
  4. Носов М.А. Применимость длинноволнового приближения к описанию динамики цунами // Ученые записки физического факультета Московского университета. 2017. № 4. С. 1740503-1-1740503-7.
  5. Носов М.А., Зарубина А.И. Критерий применимости теории длинных волн для описания диспергирующих волн цунами // Изв. РАН. Физика атмосферы и океана. 2023. Т. 59. № 4. C. 485–496.
  6. Носов М.А., Колесов С.В. Комбинированная численная модель цунами // Математическое моделирование. 2019. Т. 31. № 1. С. 44–62.
  7. Пелиновский Е.Н. Нелинейная динамика волн цунами. Горький: ИПФ АН СССР, 1982. 216 с.
  8. Пелиновский Е.Н. Гидродинамика волн цунами. Н. Новгород: ИПФ РАН, 1996. 276 с.
  9. Aki K., Richards P.G. Quantitative seismology: Theory and Methods. San Francisco: A Series of books in geology, 1980. 982 p.
  10. Baba T., Takahashi N., Kaneda Y. et al. Parallel implementation of dispersive tsunami wave modeling with a nesting algorithm for the 2011 Tohoku tsunami // Pure Appl. Geophys. 2015. V. 172. P. 3455–3472.
  11. Choi B.H., Kim K.O., Min B.I., Pelinovsky E. Transoceanic Propagation of 2011 East Japan Earthquake Tsunami // Ocean & Polar Res. 2014. V. 36. № 3. P. 225–234.
  12. Choi B.H., Pelinovsky E., Kim K.O., Lee J.S. Simulation of the trans-oceanic tsunami propagation due to the 1883 Krakatau volcanic eruption // Nat. Haz. Earth Syst. Sci. 2003. V. 3. № 5. P. 321–332.
  13. Dobrokhotov S.Yu., Grushin V.V., Sergeev S.A., Tirozzi B. Asymptotic theory of linear water waves in a domain with nonuniform bottom with rapidly oscillating sections // Russ. Jour. Math. Phys. 2016. V. 23. № 4. P. 454–473.
  14. Fuhrman D.R., Madsen P.A. Tsunami generation, propagation, and run-up with a high-order Boussinesq model // Coast. Eng. 2009. V. 56. № 7. P. 747–758.
  15. Glimsdal S., Pedersen G.K., Harbitz C.B. et al. Dispersion of tsunamis: does it really matter? // Nat. Hazard. Earth. Syst. Sci. 2013. V. 13. № 6. P. 1507–1526.
  16. Gusman A.R., Mulia I.E., Satake K., Watada S., Heidarzadeh M., Sheehan A.F. Estimate of tsunami source using optimized unit sources and including dispersion effects during tsunami propagation: The 2012 Haida Gwaii earthquake // Geophys. Res. Lett. 2016. V. 43. P. 9819–9828.
  17. Gusman A.R., Satake K., Shinohara M. et al. Fault slip distribution of the 2016 Fukushima earthquake estimated from tsunami waveforms // Pure Appl. Geophys. 2017. V. 174. P. 2925–2943.
  18. Imamura F., Yalciner A.C., Ozyurt G. Tsunami Modelling Manual (TUNAMI model). Sendai: Tohoku University, 2006. 58 p.
  19. Julian B.R. Ray tracing in arbitrarily heterogeneous media — Technical Note 1970-45. Cambridge: Massachusetts Institute of Technology, 1970. 18 p.
  20. Kajiura K. The leading wave of a tsunami // Bull. Earthq. Res. Inst. 1963. V. 41. № 3. P. 535–571.
  21. Kajiura K. Tsunami source, energy and directivity of wave radiation // Bull. Earthq. Res. Inst. 1970. V. 48. № 5. P. 835–869.
  22. Kirby J.T., Wei G., Chen Q. et al. FUNWAVE 1.0: Fully Nonlinear Bousinesq Wave Model — Documentation and User’s Manual. Res. Rep. No.CACR-98-06, Center for Appl. Coastal Res., Dept. of Civil Eng., Univ. of Delaware, 1998. 80 p.
  23. Korolev P.Yu., Korolev Yu.P., Loskutov A.V. Analysis of the main characteristics of tsunamis based on data from deep-ocean stations // IOP Conference Series: Earth and Environmental Science. 2019. V. 324. № 1. P. 012017-1–012017-7.
  24. Kozelkov A., Efremov V., Kurkin A. et al. Three-dimensional numerical simulation of tsunami waves based on the Navier-Stokes equations // Sci. Tsunami Hazards. 2017. V. 36. № 4. P. 183–196.
  25. Kulikov E.A., Rabinovich A.B., Thomson R.E. et al. The landslide tsunami of November 3, 1994, Skagway harbor, Alaska // J. Geophys. Res.: Oceans. 1996. V. 101. № C3. P. 6609–6615.
  26. Levin B.W., Nosov M.A. Physics of Tsunamis, Second Edition. Cham-Heidelberg-New York-Dordrecht-London: Springer, 2016. 388 p.
  27. Lynett P.J., Liu P.L.-F. Modeling wave generation, evolution, and interaction with depth-integrated dispersive wave equations. COULWAVE Code Manual. Cornell University Longand Intermediate Wave Modeling Package, 2002. 78 p.
  28. Mirchina N.R., Pelinovsky E.N. Nonlinear and dispersive effects for tsunami waves in the open ocean // Int. J. Tsunami Soc. 1982. V. 2. № 4. P. 1073–1081.
  29. Nosov M.A., Bolshakova A.V., Kolesov S.V. Displaced water volume, potential energy of initial elevation, and tsunami intensity: Analysis of recent tsunami events // Pure Appl. Geophys. 2014. V. 171. № 12. P. 3515–3525.
  30. Nosov M.A., Kolesov S.V. Optimal initial conditions for simulation of seismotectonic tsunamis // Pure Appl. Geophys. 2011. V. 168. № 6–7. P. 1223–1237.
  31. Oishi Y., Piggott M.D., Maeda T. et al. Three-dimensional tsunami propagation simulations using an unstructured mesh finite element model // J. Geophys. Res. 2013. V. 118. P. 2998–3018.
  32. Okada Y. Surface deformation due to shear and tensile faults in a half-space // Bulletin of the Seismological Society of America. 1985. V.75. N4. P.1135–1154.
  33. Saito T. Tsunami generation and propagation. Tokyo: Springer Japan, 2019. 274 p.
  34. Sandanbata O., Watada S., Satake K. et al. Ray tracing for dispersive tsunamis and source amplitude estimation based on Green’s law: Application to the 2015 volcanic tsunami earthquake near Torishima, south of Japan // Pure Appl. Geophys. 2018. V. 175. P. 1371–1385.
  35. Satake K. Effects of bathymetry on tsunami propagation: Application of ray tracing to tsunamis // Pure Appl. Geophys. 1988. V. 126. P. 27–36.
  36. Shijo R., Tsukuda Y., Sato T. et al. Tsunami Simulation by 3D Model Around a Power Station Due to the 2011 Tohoku Earthquake // Coast. Eng. J. 2016. V. 58. № 4. P. 1640014-1–1640014-18.
  37. Shokin Yu.I., Babailov V.V., Beisel S.A. et al. Mathematical Modeling in application to regional tsunami warning systems operations // Computational Science and High Performance Computing III. 2008. V. 101. P. 52–68.
  38. Shuto N. Numerical simulation of tsunamis — Its present and near future // Natural Hazards. 1991. V. 4. № 2. P. 171–191.
  39. Titov V.V., Gonzalez F.I., Mofjeld H.O., Venturato A.J. NOAA Time Seattle Tsunami Mapping Project: Procedures, Data Sources, and Products. NOAA Technical Memorandum OAR PMEL-124. 2003. 21 p.
  40. Watada S., Kusumoto S., Satake K. Traveltime delay and initial phase reversal of distant tsunamis coupled with the self-gravitating elastic Earth // J. Geophys. Res.: Solid Earth. 2014. V. 119. № 5. P. 4287–4310.
  41. Zaytsev A., Kurkin A., Pelinovsky E., Yalciner A.C. Numerical Tsunami Model NAMI-DANCE // Science of Tsunami Hazards. 2019. V. 38. № 4. P. 151–168.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).