ASSESSMENT OF THE AREA OF APPLICABILITY OF THE SHALLOW-WATER APPROXIMATION FOR REPRODUCING DISPERSIVE TSUNAMI WAVES
- Autores: Nosov M.A.1,2, Zarubina A.I.1, Kolesov S.V.1,2
-
Afiliações:
- Lomonosov Moscow State University
- Institute of Marine Geology and Geophysics, Far Eastern Branch of RAS
- Edição: Volume 61, Nº 4 (2025)
- Páginas: 442-456
- Seção: Articles
- URL: https://journals.rcsi.science/0002-3515/article/view/359893
- DOI: https://doi.org/10.7868/S3034648725040031
- ID: 359893
Citar
Resumo
Palavras-chave
Sobre autores
M. Nosov
Lomonosov Moscow State University; Institute of Marine Geology and Geophysics, Far Eastern Branch of RAS
Email: m.a.nosov@mail.ru
Moscow, Russia; Yuzhno-Sakhalinsk, Russia
A. Zarubina
Lomonosov Moscow State UniversityMoscow, Russia
S. Kolesov
Lomonosov Moscow State University; Institute of Marine Geology and Geophysics, Far Eastern Branch of RASMoscow, Russia; Yuzhno-Sakhalinsk, Russia
Bibliografia
- Абдалазиз А., Диденкулова И.И., Дутых Д. Денисенко П. Сравнение дисперсионной и бездисперсионной моделей наката длинных волн на берег // Изв. РАН. Физика атмосферы и океана. 2020. Т. 56. № 5. С. 567–574.
- Куликов Е.А., Медведев П.П., Лаппо С.С. Регистрация из космоса цунами 26 декабря 2004 г. в Индийском океане // Доклады АН. 2005. Т. 401. № 4. С. 537–542.
- Лайтхилл Д. Волны в жидкостях. М.: Мир, 1981. 598 с.
- Носов М.А. Применимость длинноволнового приближения к описанию динамики цунами // Ученые записки физического факультета Московского университета. 2017. № 4. С. 1740503-1-1740503-7.
- Носов М.А., Зарубина А.И. Критерий применимости теории длинных волн для описания диспергирующих волн цунами // Изв. РАН. Физика атмосферы и океана. 2023. Т. 59. № 4. C. 485–496.
- Носов М.А., Колесов С.В. Комбинированная численная модель цунами // Математическое моделирование. 2019. Т. 31. № 1. С. 44–62.
- Пелиновский Е.Н. Нелинейная динамика волн цунами. Горький: ИПФ АН СССР, 1982. 216 с.
- Пелиновский Е.Н. Гидродинамика волн цунами. Н. Новгород: ИПФ РАН, 1996. 276 с.
- Aki K., Richards P.G. Quantitative seismology: Theory and Methods. San Francisco: A Series of books in geology, 1980. 982 p.
- Baba T., Takahashi N., Kaneda Y. et al. Parallel implementation of dispersive tsunami wave modeling with a nesting algorithm for the 2011 Tohoku tsunami // Pure Appl. Geophys. 2015. V. 172. P. 3455–3472.
- Choi B.H., Kim K.O., Min B.I., Pelinovsky E. Transoceanic Propagation of 2011 East Japan Earthquake Tsunami // Ocean & Polar Res. 2014. V. 36. № 3. P. 225–234.
- Choi B.H., Pelinovsky E., Kim K.O., Lee J.S. Simulation of the trans-oceanic tsunami propagation due to the 1883 Krakatau volcanic eruption // Nat. Haz. Earth Syst. Sci. 2003. V. 3. № 5. P. 321–332.
- Dobrokhotov S.Yu., Grushin V.V., Sergeev S.A., Tirozzi B. Asymptotic theory of linear water waves in a domain with nonuniform bottom with rapidly oscillating sections // Russ. Jour. Math. Phys. 2016. V. 23. № 4. P. 454–473.
- Fuhrman D.R., Madsen P.A. Tsunami generation, propagation, and run-up with a high-order Boussinesq model // Coast. Eng. 2009. V. 56. № 7. P. 747–758.
- Glimsdal S., Pedersen G.K., Harbitz C.B. et al. Dispersion of tsunamis: does it really matter? // Nat. Hazard. Earth. Syst. Sci. 2013. V. 13. № 6. P. 1507–1526.
- Gusman A.R., Mulia I.E., Satake K., Watada S., Heidarzadeh M., Sheehan A.F. Estimate of tsunami source using optimized unit sources and including dispersion effects during tsunami propagation: The 2012 Haida Gwaii earthquake // Geophys. Res. Lett. 2016. V. 43. P. 9819–9828.
- Gusman A.R., Satake K., Shinohara M. et al. Fault slip distribution of the 2016 Fukushima earthquake estimated from tsunami waveforms // Pure Appl. Geophys. 2017. V. 174. P. 2925–2943.
- Imamura F., Yalciner A.C., Ozyurt G. Tsunami Modelling Manual (TUNAMI model). Sendai: Tohoku University, 2006. 58 p.
- Julian B.R. Ray tracing in arbitrarily heterogeneous media — Technical Note 1970-45. Cambridge: Massachusetts Institute of Technology, 1970. 18 p.
- Kajiura K. The leading wave of a tsunami // Bull. Earthq. Res. Inst. 1963. V. 41. № 3. P. 535–571.
- Kajiura K. Tsunami source, energy and directivity of wave radiation // Bull. Earthq. Res. Inst. 1970. V. 48. № 5. P. 835–869.
- Kirby J.T., Wei G., Chen Q. et al. FUNWAVE 1.0: Fully Nonlinear Bousinesq Wave Model — Documentation and User’s Manual. Res. Rep. No.CACR-98-06, Center for Appl. Coastal Res., Dept. of Civil Eng., Univ. of Delaware, 1998. 80 p.
- Korolev P.Yu., Korolev Yu.P., Loskutov A.V. Analysis of the main characteristics of tsunamis based on data from deep-ocean stations // IOP Conference Series: Earth and Environmental Science. 2019. V. 324. № 1. P. 012017-1–012017-7.
- Kozelkov A., Efremov V., Kurkin A. et al. Three-dimensional numerical simulation of tsunami waves based on the Navier-Stokes equations // Sci. Tsunami Hazards. 2017. V. 36. № 4. P. 183–196.
- Kulikov E.A., Rabinovich A.B., Thomson R.E. et al. The landslide tsunami of November 3, 1994, Skagway harbor, Alaska // J. Geophys. Res.: Oceans. 1996. V. 101. № C3. P. 6609–6615.
- Levin B.W., Nosov M.A. Physics of Tsunamis, Second Edition. Cham-Heidelberg-New York-Dordrecht-London: Springer, 2016. 388 p.
- Lynett P.J., Liu P.L.-F. Modeling wave generation, evolution, and interaction with depth-integrated dispersive wave equations. COULWAVE Code Manual. Cornell University Longand Intermediate Wave Modeling Package, 2002. 78 p.
- Mirchina N.R., Pelinovsky E.N. Nonlinear and dispersive effects for tsunami waves in the open ocean // Int. J. Tsunami Soc. 1982. V. 2. № 4. P. 1073–1081.
- Nosov M.A., Bolshakova A.V., Kolesov S.V. Displaced water volume, potential energy of initial elevation, and tsunami intensity: Analysis of recent tsunami events // Pure Appl. Geophys. 2014. V. 171. № 12. P. 3515–3525.
- Nosov M.A., Kolesov S.V. Optimal initial conditions for simulation of seismotectonic tsunamis // Pure Appl. Geophys. 2011. V. 168. № 6–7. P. 1223–1237.
- Oishi Y., Piggott M.D., Maeda T. et al. Three-dimensional tsunami propagation simulations using an unstructured mesh finite element model // J. Geophys. Res. 2013. V. 118. P. 2998–3018.
- Okada Y. Surface deformation due to shear and tensile faults in a half-space // Bulletin of the Seismological Society of America. 1985. V.75. N4. P.1135–1154.
- Saito T. Tsunami generation and propagation. Tokyo: Springer Japan, 2019. 274 p.
- Sandanbata O., Watada S., Satake K. et al. Ray tracing for dispersive tsunamis and source amplitude estimation based on Green’s law: Application to the 2015 volcanic tsunami earthquake near Torishima, south of Japan // Pure Appl. Geophys. 2018. V. 175. P. 1371–1385.
- Satake K. Effects of bathymetry on tsunami propagation: Application of ray tracing to tsunamis // Pure Appl. Geophys. 1988. V. 126. P. 27–36.
- Shijo R., Tsukuda Y., Sato T. et al. Tsunami Simulation by 3D Model Around a Power Station Due to the 2011 Tohoku Earthquake // Coast. Eng. J. 2016. V. 58. № 4. P. 1640014-1–1640014-18.
- Shokin Yu.I., Babailov V.V., Beisel S.A. et al. Mathematical Modeling in application to regional tsunami warning systems operations // Computational Science and High Performance Computing III. 2008. V. 101. P. 52–68.
- Shuto N. Numerical simulation of tsunamis — Its present and near future // Natural Hazards. 1991. V. 4. № 2. P. 171–191.
- Titov V.V., Gonzalez F.I., Mofjeld H.O., Venturato A.J. NOAA Time Seattle Tsunami Mapping Project: Procedures, Data Sources, and Products. NOAA Technical Memorandum OAR PMEL-124. 2003. 21 p.
- Watada S., Kusumoto S., Satake K. Traveltime delay and initial phase reversal of distant tsunamis coupled with the self-gravitating elastic Earth // J. Geophys. Res.: Solid Earth. 2014. V. 119. № 5. P. 4287–4310.
- Zaytsev A., Kurkin A., Pelinovsky E., Yalciner A.C. Numerical Tsunami Model NAMI-DANCE // Science of Tsunami Hazards. 2019. V. 38. № 4. P. 151–168.
Arquivos suplementares


