THE STABILIZATION OF WAVE DISTURBANCES IN A GEOSTROPHIC HORIZONTAL SHEAR FLOW WITH ACCOUNT OF RELIEF AND BAROCLINICITY

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The stabilization mechanisms of unboundedly increasing wave numbers of transient modes for single-wave solutions of the atmospheric dynamics equations are considered, taking into account the relief and various forms of baroclinicity with preservation of the properties of the solutions as exact ones. Estimates of the wave numbers under the action of velocity shears and relief inclinations, baroclinicity, and also in the Ekman boundary layer in comparison with observations of periodic cloud structures have been made. Parameter values at which wave blocking is possible are noted. Bimodal solutions of the equations are also indicated. Estimates of the parameters of transient wave stationarity taking into account baroclinicity in protoplanetary disks (as an example, different from baroclinicity in geophysical hydrodynamics) show a multiband structure of velocity fields.

About the authors

E. B. Gledzer

Obukhov Institute of Atmospheric Physics RAS

Email: lgg@ifaran.ru
Moscow, Russia

A. E. Gledzer

Obukhov Institute of Atmospheric Physics RAS

Email: aegledzer@gmail.com
Moscow, Russia

O. G. Chkhetiani

Obukhov Institute of Atmospheric Physics RAS

Moscow, Russia

References

  1. Гледзер А.Е., Гледзер Е.Б., Хапаев А.А., Чхетиани О.Г. Многорежимность в тонких слоях жидкости во вращающихся кольцевых каналах // Изв. РАН. Механика жидкости и газа. 2021. № 4. С. 138–150.
  2. Гледзер Е.Б. Параметры подобия и центробежная конвективная неустойчивость горизонтально неоднородных циркуляций типа Хэдли // Изв. РАН. Физика атмосферы и океана. 2008. Т. 44. № 1. С. 36–47.
  3. Должанский Ф.В. Основы геофизической гидродинамики. М.: Физматлит, 2011, 264 с.
  4. Кадер Б.А. Трехслойная структура неустойчиво стратифицированного приземного слоя атмосферы // Изв. АН СССР. Физика атмосферы и океана. 1988. Т. 24. № 12. С. 1235–1250.
  5. Калашник М.В., Чхетиани О.Г., Чагелишвили Г.Д. Новый класс краевых бароклинных волн и механизм их генерации // Изв. РАН. Физика атмосферы и океана. 2018. Т. 54. № 4. С. 361–370.
  6. Михайлова Л.А., Орданович А.Е. Когерентные структуры в пограничном слое атмосферы // Изв. АН СССР. Физика атмосферы и океана. 1991. Т. 27. № 6. С. 593–613.
  7. Обухов А.М., Глуховский А.Б., Черноусько Ю.Л. О явлениях переброса в простейших гидродинамических системах // Изв. АН СССР. Физика атмосферы и океана. 1976. Т. 13. № 11. С. 1123–1130.
  8. Чагелишвили Г.Д., Чхетиани О.Г. Трансформация волн Россби в сдвиговых течениях // Письма в ЖЭТФ. 1995. Т. 62. Вып. 4. С. 41–48.
  9. Чхетиани О.Г., Вазаева Н.В. Об алгебраических возмущениях в атмосферном пограничном слое // Изв. РАН. Физика атмосферы и океана. 2019. Т. 55. № 5. С. 62–75.
  10. Чхетиани О.Г., Калашник М.В. Связь блокингов с транзиентными неустойчивостями в «Интенсивные атмосферные вихри и их динамика» / Под ред. И.И. Мохова, М.В. Курганского, О.Г. Чхетиани. М.: Геос, 2018. С. 189–199.
  11. Чхетиани О.Г., Калашник М.В., Чагелишвили Г.Д. Динамика и блокирование волн Россби в квазидвумерных сдвиговых течениях // Письма в ЖЭТФ. 2015. Т. 101. Вып. 2. С. 84–89.
  12. Шухман И.Г. Транзиентный рост и оптимальные возмущения на примере простейшей динамической модели // Доклады РАН. 2005. Т. 402. С. 759–761.
  13. Alpers W., Brummer B. Atmospheric boundary layer rolls observed by the synthetic aperture radar aboard the ERS-1 satellite // J. Geophys. Res. 1994. V. 99. P. 12613–12621.
  14. Bayly B.J. Three-dimensional instability of elliptical flow // Phys. Rev. Lett. 1986. V. 57. 2160–2171.
  15. Brown R.A. A secondary flow model for the planetary boundary layer // J. Atmos. Sci. 1970. V. 27. P. 742–757.
  16. Brown R.A. Longitudinal instabilities and secondary flows in the planetary boundary layer // Rev. Geophys. Space Phys. 1980. V. 18. P. 683–697.
  17. Buizza R. Palmer T.N. The singular-vector structure of the atmospheric global circulation // J. Atmos. Sci. 1995. V. 52. № 9. P. 1434–1456.
  18. Charney J.G., DeVore J.G. Multiple flow equilibria in the atmosphere and blocking // J. Atmos. Sci. 1979. V. 36. P. 1205–1216.
  19. Craik A.D.D. The stability of unbounded two—and three-dimensional flows subject to body forces: some exact solutions // J. Fluid Mech. 1989. V. 198. P. 275–295.
  20. Cushman-Roisin B., Beckers J.-M. Introduction to Geophysical Fluid Dynamics // Academic Press. 2009. 768 p.
  21. Drobinski P., Foster R.C. On the origin of near-surface streaks in the neutrally-stratified planetary boundary layer // Boundary-Layer Meteorology. 2003. V. 108. P. 247–256.
  22. Farrell B.F. The initial growth of disturbances in a baroclinic flow // J. Atmos. Sci. 1982. V. 39. P. 1663–1686.
  23. Foster R.C. Structure and energetics of optimal Ekman layer perturbations // J. Fluid Mech. 1997. V. 333. P. 97–123.
  24. Gledzer E.B., Ponomarev V.M. Instability of bounded flows with elliptical streamlines // J. Fluid Mech. 1992. V. 240. P. 1–30.
  25. Häckel H. Wolken und andere Phänomene am Himmel // EugenUlmer KG. 2018.
  26. Hibino K., Ishikawa H., Ishioka K. Effect of a capping inversion on the stability of an Ekman boundary layer // J. Meteorol. Soc. Jpn. Ser. II. 2012. V. 90. № 2. P. 311–319.
  27. Karp M., Shukhman I.G., Cohen J. Evolution of finite-amplitude localized vortices in planar homogeneous shear flows // Phys. Rev. Fluids. 2017. V. 2. P. 024701.
  28. Klahr H. The global baroclinic instability in accretion disks. II. Local linear analysis // The Astrophysical Journal. 2004. V. 606. P. 1070–1082.
  29. Knobloch E. The stability of non-separable barotropic and baroclinic shear flows // Astrophys. Space. Sci. 1985. V. 116. P. 149–163.
  30. Kuettner J.P. The band structure of the atmosphere // Tellus. 1959. V. 11. P. 267–294.
  31. LeMone M.A. The structure and dynamics of horizontal roll vortices in the planetary boundary layer // J. Atmos. Sci. 1973. V. 30. P. 1077–1091.
  32. Lilly D.K. On the instability of Ekman boundary flow // J. Atmos. Sci. 1966. V.23. P. 481–494.
  33. Mourad P.D., Walter B.A. SAR streaks vs cloud streets: viewing a cold air outbreak using satellite-based SAR and AVHRR imagery // J. Geophys. Res. 1996. V. 101. P. 16391–16400.
  34. Petersen M.R., Julien K., Stewart G.R. Baroclinic vorticity production in protoplanetary disks. I. Vortex Formation // The Astrophysical Journal. 2007. V. 658. P. 1236–1251.
  35. Petersen M.R., Stewart G.R., Julien K. Baroclinic vorticity production in protoplanetary disks. II. Vortex growth and longevity // The Astrophysical Journal. 2007. V. 658. P. 1252–1263.
  36. Shukhman I.G., Levinski V.B. Temporal evolution of a localized weak vortex in viscous circular shear flows // Phys. Fluids. 2005. V. 17. P. 017104. doi: 10.1063/1.1828125.
  37. Shukhman I.G. Evolution of a localized vortex in plane nonparallel viscous flows with constant velocity shear. II: Elliptic flow // Phys. Fluids. 2007. V. 19. P. 017106. doi: 10.1063/1.2424678.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).