Determination of total ozone column from spectral measurements of IKFS-2 during 2015–2022.
- Authors: Polyakov A.V.1, Kriukovskikh E.P.1, Virolainen Y.A.1, Nerobelov G.M.1,2,3, Kozlov D.A.4, Timofeyev Y.M.1
-
Affiliations:
- St Petersburg University
- SPC RAS
- Russian State Hydrometeorological University
- Keldysh Research Center
- Issue: Vol 60, No 6 (2024)
- Pages: 947-958
- Section: Articles
- URL: https://journals.rcsi.science/0002-3515/article/view/282125
- DOI: https://doi.org/10.31857/S0002351524060065
- EDN: https://elibrary.ru/HUYKHN
- ID: 282125
Cite item
Abstract
The results of determining the ozone total column (OTC) from the spectra of the outgoing thermal infrared radiation measured by the IKFS-2 instrument from the “Meteor-M” No. 2 spacecraft during 8 years of measurements are presented. The previously developed methodology for the interpretation of spectral measurements made in 2015–2020 with a scanning bandwidth (SBW) of 1000 km is applied to the measurements in 2021–2022 with SBW of 1500 km. It is shown that the observed increase in the differences between the IKFS-2 data and the results of independent measurements is caused not by the expansion of the OTC variability statistics, but by the increase in the range of scanning angle variation. After finalization of the methodology for the measurements with a 1500–km SBW, the comparison with independent data showed that the standard deviations of differences with the results of ground and satellite measurements for all 8 years do not exceed 3% and did not increase compared to the first 6 years of measurements. To analyze the results in the polar regions, the OTC values obtained from the IKFS-2 spectra are compared with the ozonesonde data, which are performed continuously throughout the year, including the polar night. A good qualitative agreement of the IKFS-2 data and ozone sounding data, including winter-spring periods of extreme OTC decrease at high latitudes of both hemispheres, is shown. The standard deviations of the differences between the IKFS-2 data and the OTC values from ozone sounding data were from 5.3 to 11 % (17–33 D.U.) for different stations, or on average for all stations 7.9 %, which is consistent with the uncertainty of the estimates of the integrated ozone content in the vertical column from ozonesonde data.
Full Text

About the authors
A. V. Polyakov
St Petersburg University
Author for correspondence.
Email: a.v.polyakov@spbu.ru
Russian Federation, 7–9 Universitetskaya Embankment, St Petersburg, 199034
E. P. Kriukovskikh
St Petersburg University
Email: kriukovskikh1967@mail.ru
Russian Federation, 7–9 Universitetskaya Embankment, St Petersburg, 199034
Ya. A. Virolainen
St Petersburg University
Email: yana.virolainen@spbu.ru
Russian Federation, 7–9 Universitetskaya Embankment, St Petersburg, 199034
G. M. Nerobelov
St Petersburg University; SPC RAS; Russian State Hydrometeorological University
Email: akulishe95@mail.ru
Scientific Research Centre for Ecological Safety
Russian Federation, 7–9 Universitetskaya Embankment, St Petersburg, 199034; Korpusnaya 18, St Petersburg, 187110; Maloohtinskii prospect 98, Saint-Petersburg, 195196D. A. Kozlov
Keldysh Research Center
Email: dakozlov@kerc.msk.ru
Russian Federation, 8, Onezhskaya Str.,Moscow, 125438
Yu. M. Timofeyev
St Petersburg University
Email: y.timofeev@spbu.ru
Russian Federation, 7–9 Universitetskaya Embankment, St Petersburg, 199034
References
- Андреев В.В., Баженов О.Е., Белан Б.Д., Варгин П.Н., Груздев А.Н., Еланский Н.Ф., Жамсуева Г.С., Заяханов А.С., Котельников С.Н., Кузнецова И.Н., Куликов М.Ю., Невзоров А.В., Оболкин В.А., Постыляков О.В., Розанов Е.В., Скороход А.И., Соломатникова А.А., Степанов Е.В., Тимофеев Ю.М., Фейгин А.М., Ходжер Т.В. Российские исследования атмосферного озона и его предшественников в 2019–2022 гг. // Изв. РАН. Физика атмосферы и океана. 2023. Т. 59. № 7. С. 1034–1060. doi: 10.31857/S0002351523070027.
- База данных озонозондирования. [Электронный ресурс]. URL: https://hegiftom.meteo.be/ (дата обращения 20.02.2024)
- База данных спутниковых измерений озона. [Электронный ресурс]. URL: https://disc.gsfc.nasa.gov/ (дата обращения 03.03.2024)
- Гаркуша А.С., Поляков А.В., Тимофеев Ю.М., Виролайнен Я.А. Определение общего содержания озона по данным измерений спутникового ИК Фурьеспектрометра // Изв. РАН. Физика Атмосферы и Океана. 2017. Т. 53. № 4. С. 493–501. doi: 10.7868/S0003351517040079
- Головин Ю.М., Завелевич Ф.С., Никулин А.Г., Козлов Д.А., Монахов Д.О., Козлов И.А., Архипов С.А., Целиков В.А., Романовский А.С. Бортовые инфракрасные Фурье--спектрометры для температурно-влажностного зондирования атмосферы Земли // Исследование Земли из космоса. 2013. № 6. С. 25. doi: 10.7868/S0205961413060018.
- Уоссермен Ф. Нейрокомпьютерная техника: Теория и практика. М.: Мир, 1992. 236.
- Bernath P.F. The Atmospheric Chemistry Experiment (ACE). J. Quant. Spectrosc. Radiat. Transf. 2017, V. 186. P. 3–16.
- Bertaux J.L., Mégie G., Widemann T., Chassefière E., Pellinen R., Kyrola E., Korpela S., Simon P. Monitoring of ozone trend by stellar occultations: the GOMOS instrument // Advances in Space Research. V. 11. № 3. 1991. P. 237–242. https://doi.org/10.1016/0273-1177(91)90426-K.
- Boynard A., Hurtmans D., Koukouli M.E., Goutail F., Bureau J., Safieddine S., Lerot C., Hadji-Lazaro J., Wespes C., Pommereau J.-P. Seven years of IASI ozone retrievals from FORLI: Validation with independent total column and vertical profile measurements // Atmos. Meas. Technol. 2016. 9. 4327–4353.
- Garane K., Koukouli M.-E., Verhoelst T., Lerot C., Heue K.-P., Fioletov V., Balis D., Bais A., Bazureau A., Dehn A. et al. TROPOMI/S5P total ozone column data: Global ground- based validation and consistency with other satellite missions // Atmos. Meas. Techniq. 2019. V. 12. P. 5263–5287.
- GAW Report No. 201, Quality Assurance and Quality Control for Ozonesonde Measurements in GAW. WMO. Geneva. 2014, 94 Р. https://library.wmo.int/viewer/55131/download?file=gaw_201_en.pdf&type=pdf&navigator=1
- Glatthor N., von Clarmann T., Fischer H., Funke B., Gil-López S., Grabowski U., Höpfner M., Kellmann S., Linden A., López-Puertas M., Mengistu Tsidu G., Milz M., Steck T., Stiller G.P. and Wang D.-Y. Retrieval of stratospheric ozone profiles from MIPAS/ENVISAT limb emission spectra: a sensitivity study // Atmos. Chem. Phys. 2006. V. 6. № 10. 2767–2781. https://doi.org/10.5194/acp-6-2767-2006.
- Clerbaux C., Boynard A., Clarisse L., George M., Hadji-Lazaro J., Herbin H., Hurtmans D., Pommier M., Razavi A., Turquety S., Wespes C. and Coheur P.-F. Monitoring of atmospheric composition using the thermal infrared IASI/MetOp sounder, Atmos. Chem. Phys. 2009. V. 9. 6041–6054. https://doi.org/10.5194/acp-9-6041-2009.
- Kerr J.B. New methodology for deriving total ozone and other atmospheric variables from Brewer spectrophotometer direct sun spectra // J. Geogr. Res. 2002. V. 107. ACH 22-1–ACH 22-17.
- Kuttippurath J., Kumar P., Nair P.J., Chakraborty A. Accuracy of Satellite Total Columnzone Measurements in Polar Vortex Conditions: Comparison with Ground-Based Observations in 1979–2013 // Remote Sens. Environ. 2018. V. 209. P. 648–659.
- Lee K.A., Lay R.R., Jarnot R.F., Cofield R.E., Pickett H.M., Stek P.C., Flower D.A. Flower EOS Aura MLS: first year post-launch engineering assessment // Proc. SPIE 5882, Earth Observing Systems X, 2005. 58821D. https://doi.org/10.1117/12.620130
- Levelt P.F., Joiner J., Tamminen J., Veefkind J.P., Bhartia P.K., Zweers D.C.S., Duncan B.N., Streets D.G., Eskes H., van der A.R., et al. The Ozone Monitoring Instrument: Overview of 14 Years in Space. Atmos. Chem. Phys. 2018. 18. 5699–5745.
- McPeters R.D., Kroon M., Labow G., Brinksma E., Balis D., Petropavlovskikh I., Veefkind J.P., Bhartia P.K., Levelt P.F. Validation of the Aura Ozone Monitoring Instrument Total Column Ozone Product. J. Geophys. Res. 2008, 113, D15S14.
- McPeters R.D., Frith S. and Labow G.J. OMI Total Column Ozone: Extending the Long-Term Data Record // Atmospheric Measurement Techniques 2015. V. 8 № 11. P. 4845–4850. doi: 10.5194/amt-8-4845-2015.
- OMI DATA https://aura.gesdisc.eosdis.nasa.gov/data/Aura_OMI_Level2/OMTO3.003/ доступ: 25 Апреля 2023 г.
- Polyakov A., Virolainen Y., Nerobelov G., Timofeyev Y., Solomatnikova A. Total ozone measurements using IKFS-2 spectrometer aboard Meteor-M N2 satellite in 2019– 2020 // International Journal of Remote Sensing. 2021. V. 42. № 22. P. 8709–8733. doi: 10.1080/01431161.2021.1985741
- Polyakov A., Virolainen Y., Nerobelov G., Kozlov D., Timofeyev Y. Six Years of IKFS-2 Global Ozone Total Column Measurements // Remote Sens. 2023. V. 15. № 9. 2481. https://doi.org/10.3390/rs15092481
- TOAR-II HEGIFTOM: Description of homogenized ozonesonde free-tropospheric ozone time series (https://hegiftom.meteo.be/)
- TROPOMI DATA Copernicus Sentinel data processed by ESA, German Aerospace Center (DLR) (2020), Sentinel-5P TROPOMI Total Ozone Column 1-Orbit L2 5.5km × 3.5km, Greenbelt, MD, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC), доступ: 05 марта 2024, 10.5270/S5P-fqouvyz
- Veefkind J.P., Aben I., McMullan K., Förster H., De Vries J., Otter G., Claas J., Eskes H.J., De Haan J.F., Kleipool Q. et al. TROPOMI on the ESA Sentinel-5 Precursor: A GMES Mission for Global Observations of the Atmospheric Composition for Climate, Air Quality and Ozone Layer Applications // Remote Sens. Environ. 2012. V. 120. P. 70–83.
- WHO global air quality guidelines: particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. 2021. https://www.who.int/publications/i/item/9789240034228
- WMO/GAW Ozone Monitoring Community, World Meteorological Organization-Global Atmosphere Watch Program (WMO-GAW)/World Ozone and Ultraviolet Radiation Data Centre (WOUDC) Total Ozone - Hourly Observations. Retrieved March 17, 2024, from https://woudc.org. A list of all contributors is available on the website. doi: 10.14287/10000001
- WMO, Ozonesonde Measurements Principles and Best Operational Practices – GAW Report No. 268, 2021 https://library.wmo.int/records/item/57720-ozonesonde-measurement-principles-and-best-operational-practices
- WMO, Ozone Research and Monitoring – GAW Report No. 278, 2022 https://library.wmo.int/viewer/58360/download?file=2022OzoneAssessment.pdf&type=pdf&navigator=1
- WMO, State of the Global Climate 2023, 2023 https://wmo.int/publication-series/state-of-global-climate-2023
Supplementary files
