Dispersion relation for wind waves with account for the drift current
- 作者: Plaksina Y.Y.1, Pushtaev A.V.1, Rodygin V.I.1, Vinnichenko N.A.1, Uvarov A.V.1
-
隶属关系:
- Lomonosov Moscow State University
- 期: 卷 60, 编号 3 (2024)
- 页面: 285-294
- 栏目: Articles
- URL: https://journals.rcsi.science/0002-3515/article/view/274359
- DOI: https://doi.org/10.31857/S0002351524030024
- EDN: https://elibrary.ru/JIJDVK
- ID: 274359
如何引用文章
详细
Analysis of the wind waves dispersion relation becomes complicated if drift current is present. In general, this relation is derived from the Rayleigh equation, which does not have an analytical solution for an arbitrary velocity profile. In the limiting case, when the gravity-capillary wavelength is small compared to the typical flow depth, the simple Doppler approximation can be used. But in general, this approximation is not valid, and it necessary to take into account the vertical profile of horizontal velocity up to the depth, which corresponds to the considered wavelength. The velocity profile of the drift current is determined using Particle Image Velocimetry. High-resolution spatiotemporal spectra of the waves are obtained with color schlieren technique. Small addition of sodium dodecyl sulfate enabled us to estimate the influence of soluble impurities on the structure of the drift current and modification of the ratio between the drift current depth and the gravity-capillary wavelength. In the present work, an algorithm for numerical calculation of the dispersion relation for a given velocity profile is proposed. It is shown that the dispersion relation for a wind channel is adequately described by Rayleigh equation and the angle between the wave propagation direction and the wind, which is introduced in geophysics for correction of the dispersion relation, may be actually related to different values of the ratio between the wavelength and the drift current depth.
全文:

作者简介
Yu. Plaksina
Lomonosov Moscow State University
编辑信件的主要联系方式.
Email: yuplaksina@mail.ru
俄罗斯联邦, Moscow
A. Pushtaev
Lomonosov Moscow State University
Email: yuplaksina@mail.ru
俄罗斯联邦, Moscow
V. Rodygin
Lomonosov Moscow State University
Email: yuplaksina@mail.ru
俄罗斯联邦, Moscow
N. Vinnichenko
Lomonosov Moscow State University
Email: yuplaksina@mail.ru
俄罗斯联邦, Moscow
A. Uvarov
Lomonosov Moscow State University
Email: yuplaksina@mail.ru
俄罗斯联邦, Moscow
参考
- Голицын Г. С. Статистика и динамика природных процессов и явлений: Методы, инструментарий, результаты. М.: Красанд, 2013. 400 с.
- Кандауров А. А., Троицкая Ю. И., Сергеев Д. А., Вдовин М. И., Байдаков Г. А. Среднее поле скорости воздушного потока над поверхностью воды при лабораторном моделировании штормовых и ураганных условий в океане // Изв. РАН. Физика атмосферы и океана. 2014. Т. 50. № 4. С. 455–467.
- Мельникова О. Н., Показеев К. В., Рожновская А. А. Дрейфовая скорость в области усиления ветровых волн // Изв. РАН. Серия физическая. 2012. Т. 76. № 12. С. 1515–1519.
- Плаксина Ю.Ю, Пуштаев А. В., Винниченко Н. А., Уваров А. В. Влияние слабой поверхностной плёнки на возникновение и распространение ветровых волн в канале // Изв. РАН. Физика атмосферы и океана. 2023. Т. 59. № 5. С. 661–672.
- Banner M. L., Peirson W. L. Tangential stress beneath wind-driven air-water interfaces // J. Fluid Mech. 1998. V. 364. P. 115–145.
- Burns J. C. Long waves in running water // Math. Proc. Camb. Phil. Soc. 1953. V. 49. № 4. P. 695–706.
- Guimarães P. V., Ardhuin F., Bergamasco F., Leckler F., Filipot J. F., Shim J. S., Dulov V., Benetazzo A. A data set of sea surface stereo images to resolve space-time wave fields // Sci. Data 2020. V. 7. № 1. P. 145.
- Hunt J. N. Gravity waves in flowing water // Proc. R. Soc. Lond. A. 1955. V. 231. № 1187. P. 496–504.
- Kanevsky M. B. Radar imaging of the ocean waves. Elsevier, 2008. 195 p.
- Liberzon D., Shemer L. Experimental study of the initial stages of wind waves’ spatial evolution // J. Fluid Mech. 2011. V. 681. P. 462–498.
- Longo S., Chiapponi L., Clavero M., Mäkelä T., Liang D. Study of the turbulence in the air-side and water-side boundary layers // Coast. Eng. 2012. V. 69. P. 67–81.
- Miles J. Gravity waves on shear flows // J. Fluid Mech. 2001. V. 443. P. 293–299.
- Polnikov V., Qiao F., Ma H. Surface Drift Currents Induced by Waves and Wind in a Large Tank // J. Phys. Oceanogr. 2020. V. 50. P. 3063–3072.
- Raffel M., Willert C. E., Scarano F., Kähler C. J., Wereley S. T., Kompenhans J. (2007) Particle image velocimetry: a practical guide. Third edition. Springer: Berlin, 2018. 669 p.
- Shemer L. On evolution of young wind waves in time and space // Atmosphere. 2019. V. 10. № 9. P. 562.
- Siddiqui K., Loewen M. R. Characteristics of the wind drift layer and microscale breaking waves // J. Fluid Mech. 2007. V. 573. P. 417–456.
- Simmen J. A., Saffman P. G. Steady deep‐water waves on a linear shear current // Studies in Applied Mathematics. 985. V. 73. № . 1. P. 35–57.
- Takagaki N., Suzuki N., Troitskaya Y., Tanaka C., Kandaurov A., Vdovin M. Effects of current on wind waves in strong winds // Ocean Sci. 2020. V. 16. № 5. P. 1033–1045.
- Tilinina N., Ivonin D., Gavrikov A., Sharmar V., Gulev S., Suslov A., Suslov A., Fadeev V., Trofimov B., Bargman S., Salavatova L., Koshkina V., Shishkova P., Ezhova E., Krinitsky M., Razorenova O., Koltermann K. P., Tereschenkov V., Sokov A. Wind waves in the North Atlantic from ship navigational radar: SeaVision development and its validation with the Spotter wave buoy and WaveWatch III // Earth Sys. Sci. Data 2022. V. 14. № 8. P. 3615–3633.
- Troitskaya Y. I., Sergeev D. A., Kandaurov A. A., Baidakov G. A., Vdovin M. A., Kazakov V. I. Laboratory and theoretical modeling of air‐sea momentum transfer under severe wind conditions // J. Geophys. Res.: Oceans. 2012. V. 117. № C11. COOJ21.
- Veron F., Melvill W. K. Experiments on the stability and transition of wind-driven water surfaces // J. Fluid Mech. 2001. V. 446. P. 25–65.
- Yang J., Wang C., Tian, Y., Zhou H., Wen B. Wind direction inversion using shore-based UHF radar // IEEE Trans. Geosci. Remote Sens. 2022. V. 60. P. 1–16.
- Yih C. S. Surface waves in flowing water // J. Fluid Mech. 1972. V. 51. № 2. P. 209–220.
- Zavadsky A., Benetazzo A., Shemer L. On the two-dimensional structure of short gravity waves in a wind wave tank // Phys. Fluids. 2017. V. 29. № 1. P. 016601.
- Zavadsky A., Shemer L. Water waves excited by near-impulsive wind forcing // J. Fluid Mech. 2017. V. 828. P. 459–495.
- Zhang X., Cox C. Measuring the two-dimensional structure of wavy water surface optically: A surface gradient detector // Exp. Fluids 1994. V. 7. P. 225–237.
- Zhang X., Dabiri D., Gharib M. Optical mapping of fluid density interfaces: Concepts and implementations // Rev. Sci. Instrum. 1996. V. 67. № 5. P. 1858–1868.
补充文件
