Dynamics of air temperature changes in the atmospheric boundary layer during the solar eclipse of March 29, 2006
- Authors: Bush G.А.1, Elansky N.F.1, Kadyrov Е.N.2, Kulichkov S.N.1,3, Chunchuzov I.P.1, Prokosheva N.S.4
-
Affiliations:
- Obukhov Institute of Atmospheric Physics of the Russian Academy of Sciences
- “Central Aerological Observatory” of Roshydromet
- Lomonosov Moscow State University
- Vladimir State University named after Alexander Grigoryevich and Nikolai Grigoryevich Stoletov
- Issue: Vol 60, No 2 (2024)
- Pages: 196–205
- Section: Articles
- URL: https://journals.rcsi.science/0002-3515/article/view/265556
- DOI: https://doi.org/10.31857/S0002351524020068
- EDN: https://elibrary.ru/KQFRFQ
- ID: 265556
Cite item
Abstract
The data of measurements of air temperature profiles in the atmospheric boundary layer (ABL) during the total solar eclipse on March 29, 2006 in Kislovodsk and at the Kislovodsk High-Mountain Scientific Station (KVNS) on the central shadow line are presented. The solar eclipse lasted from 14:08 to 16:27 local time, the total phase of the eclipse began at 15:15 and lasted 2:32. In development of the results obtained by us in our previous work, we compared the data on air temperature profiles at two points, Kislovodsk and KVNS. The influence of local conditions has been studied. It was shown that local conditions significantly affect both the amplitude of atmospheric pressure pulsations caused by a solar eclipse and their phase, as well as the nature of the change in the spectral density of air temperature with height in the range of periods corresponding to the duration of the solar eclipse. Based on the measurements of temperature profiles, the fluctuations of the atmospheric pressure difference at the level of the earth’s surface and at a certain height, up to which the temperature profiles were measured equal to 600 m, were reconstructed, caused by a solar eclipse, in coordinates: height – time has different trajectories in the case of Kislovodsk and KVNS. The difference in the trajectories of air temperature minima in Kislovodsk and at the KVNS determines both different delays in pressure minima relative to the beginning of the eclipse and time delays between surface pressure fluctuations at observation points as a whole. Also, a new method is proposed for determining the speed of ascending air currents using data on the altitude dependence of the time of reaching a minimum in temporal temperature variations caused by a solar eclipse. The changes in the spectral density of air are compared with height, the amplitude of the reconstructed atmospheric pressure pulsations in Kislovodsk and at the KVNS, and the speed of ascending air currents.
Full Text

About the authors
G. А. Bush
Obukhov Institute of Atmospheric Physics of the Russian Academy of Sciences
Author for correspondence.
Email: bushgregory@yandex.ru
Russian Federation, 119017, Moscow, Pyzhevsky lane, 3
N. F. Elansky
Obukhov Institute of Atmospheric Physics of the Russian Academy of Sciences
Email: bushgregory@yandex.ru
Russian Federation, 119017, Moscow, Pyzhevsky lane, 3
Е. N. Kadyrov
“Central Aerological Observatory” of Roshydromet
Email: bushgregory@yandex.ru
Russian Federation, 141700, Dolgoprudny, Moscow region, Pervomayskaya str., 3
S. N. Kulichkov
Obukhov Institute of Atmospheric Physics of the Russian Academy of Sciences; Lomonosov Moscow State University
Email: snk@ifaran.ru
Russian Federation, 119017, Moscow, Pyzhevsky lane, 3; 119081, Moscow, Leninskie Gory, building 1, building 2, GSP-1
I. P. Chunchuzov
Obukhov Institute of Atmospheric Physics of the Russian Academy of Sciences
Email: bushgregory@yandex.ru
Russian Federation, 119017, Moscow, Pyzhevsky lane, 3
N. S. Prokosheva
Vladimir State University named after Alexander Grigoryevich and Nikolai Grigoryevich Stoletov
Email: bushgregory@yandex.ru
Russian Federation, 600000, Vladimir, Gorky str., 87
References
- Буш Г. А., Грачёв А. И. Флуктуации атмосферного давления во время солнечного затмения 31 июля 1981 г. // Изв. АН СССР. Физика атмосферы и океана. 1984. Т. 20. № 7. С. 49–650.
- Буш Г.А, Еланский Н.Ф, Кадыгров Е.Н., Куличков С.Н., Чунчузов И.П., Прокошева Н.С. Влияние солнечного затмения 29 марта 2006 года на флуктуации атмосферного давления и приземные профили температуры // Изв. РАН. Физика атмосферы и океана. 2022. Т. 58. № 4. С. 1–8.
- Кадыгров Е.Н. Микроволновая радиометрия атмосферного пограничного слоя: метод, аппаратура, результаты измерений // Оптика атмосферы и океана. 2009. Т. 22. № 7. С. 697–704.
- Anderson R.C., Keefer D.R. Observation of the temperature and pressure changes during the 30 June1973 solar eclipse // Journal Atmos. Sci. 1975. V. 32. № 1. P. 228– 231.
- Goodwin G.L., Hobson G.J. Atmospheric gravity waves generated during a solar eclipse // Nature. 1978. V. 275. P. 109–111.
- Jones B.W., Miseldine G.J., Lambourne R.J.A. A possible atmosphericpressure wave from the total solar eclipse of 22 July 1990 // J. of Atmospheric and Terrestrial Physics. 1992. V. 54. № 2. P. 113–115.
- Eaton F.D., Hines, J.R., Hatch W.H. et al. Solar eclipse effects observed in the planetary boundary layer over a desert // Boundary-Layer Meteorology 1997. V. 83. P. 331–346.
- Kadygrov E.N., Miller E.A., Troitsky A.V. Study of Atmospheric Boundary Layer Thermodynamics During Total Solar Eclipses // IEEE Transactions on Geoscience and Remote Sensing. 2013. V. 51. № 9. P. 4672–4677.
- Marty J.F., Daladier D. Linear spectral numerical model for internal gravity wave propagation // J. Atmos. Sci. 2010. V. 67. P. 1632–1642.
- Marty J.F., Daladier D., Ponceau E., Blank U., Munkhuu. Surface Pressure Fluctuations Produced by the Total Solar Eclipse of 1 August 2008 // J. Atm. Sci. 2013. V. 70. P. 809–823.
Supplementary files
