Turbulent Exchange in Unsteady Air-Sea Interaction at Small and Submesoscales

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

An adequate description of the interaction between the atmosphere and ocean remains one of the most important problems of modern oceanology and climatology. An extremely wide variety of physical processes occurring in the coupled layers, a large range of scales, a moving boundary, all this factors significantly complicates the creation of models that would allow calculating the physical characteristics in both media with the necessary accuracy. In this paper the temporal variability of dynamic parameters in the driving layer of the atmosphere and in the near-surface layer of the sea on small and sub-mesoscales from one to several tens of hours is considered. The collected experimental data show a very high correlation between the dynamic wind speed and turbulence intensity in the upper sea layer on all scales recorded. An important distinguishing feature of all measured physical quantities in both media is the presence of quasi-periodic oscillations with different periods. For a more accurate description of momentum and energy fluxes from the atmosphere a non-stationary model of turbulent exchange in the near-surface layer of the sea is proposed. The model takes into account quasi-periodicity in the intensity of dynamic interaction between the atmosphere and the sea at these scales. In the model we use the equations of momentum and turbulent energy balance, the system of equations is solved numerically, the calculation results are compared with other models and with experimental data. It is shown that taking into account the non-stationarity of the wind strain improves the correspondence between the calculations and the experimental data. It is noted that in the nonstationary case, the energy and momentum flux from the atmosphere and the turbulence intensity increases compared to the action of a constant average wind of the same duration. Therefore, the strong averaging often used in global models may markedly underestimate the intensity of the dynamic interaction between the atmosphere and ocean.

Full Text

Restricted Access

About the authors

A. M. Chukharev

Marine Hydrophysical Institute of the Russian Academy of Sciences

Author for correspondence.
Email: alexchukh@mail.ru
Russian Federation, Kapitanskaya str., 2, Sevastopol, 299011

M. I. Pavlov

Marine Hydrophysical Institute of the Russian Academy of Sciences

Email: alexchukh@mail.ru
Russian Federation, Kapitanskaya str., 2, Sevastopol, 299011

References

  1. Зацепин А.Г., Пиотух В. Б., Корж А.О., Куклева О.Н., Соловьев Д.М. Изменчивость поля течений в прибрежной зоне Черного моря по измерениям донной станции adcp // Океанология. 2012. Т. 52. № 5. С. 629–642. https:// doi.org/10.22449/0233-7584-2021-5623-640
  2. Монин А.С., Яглом А.М. Статистическая гидромеханика. Ч. 1. М.: Наука, 1965. 639 с.
  3. Ратнер Ю.Б., Фомин В.В., Холод А.Л., Иванчик А.М. Модернизированная система оперативного прогноза морского волнения Черноморского центра морских прогнозов // Морской гидрофизический журнал. 2021. Т. 37. № 5. С. 623– 640. https://doi.org/10.22449/0233-7584-20215-623-640
  4. Самарский А.А. Теория разностных схем. М.: Наука, 1977. 656 с.
  5. Самодуров А.С., Дыкман В.З., Барабаш В.А. Ефремов О.И., Зубов А.Г., Павленко О.И. Измерительный комплекс “Сигма-1” для исследования мелкомасштабных характеристик гидрофизических полей в верхнем слое моря // Мор. гидрофиз. журн. 2005. № 5. С. 60 – 71.
  6. Хлопков Ю.И., Жаров В.А., Горелов С.Л. Когерентные структуры в турбулентном пограничном слое. М.: МФТИ, 2002. 129 с.
  7. Чухарев А.М. Модель турбулентности со многими временными масштабами для приповерхностного слоя моря // Изв. РАН. Физика атмосферы и океана. 2013. Т. 49. № 4. С. 477–488. https://doi.org/10.7868/S0002351513040020
  8. Чухарев А.М. Применение измерительного комплекса“Сигма-1” для исследования турбулентно сти на океанографической платформе // Экологическая безопасность прибрежной и шельфовой зон и комплексное использование ресурсов шельфа. 2010. Вып. 21. С. 231–238.
  9. Чухарев А.М., Репина И.А. Взаимодействие пограничных слоев моря и атмосферы на малых и средних масштабах в прибрежной зоне // Мор. гидроф. журн. 2012. № 2. С. 60-78.
  10. Belcher S.E., Grant A.L.M., Hanley K.E. еt al. A global perspective on Langmuir turbulence in the ocean surface boundary layer // Geophys. Res. Let. 2012. Vol. 39. L18605. https://doi.org/10.1029/2012GL052932
  11. Craig P.D., Banner M.L. Modelling wave-enhanced turbulence in the ocean surface layer // J. Phys. Oceanogr. 1994. V. 24. P. 2546–2559. https://doi.org/10.1175/1520-0485(1994)024 <2546:MWETIT>2.0.CO;2
  12. D’Alessio S.J.D., Abdella K., McFarlane N.A. A new second order turbulence closure scheme for modeling the oceanic mixed layer // J. Phys. Oceanogr. 1998. V. 28. № 8. P. 1624–1641. https://doi.org/10.1175/1520-0485(1998)028 <1624:ANSOTC>2.0.CO;2
  13. Donelan M.A, Hamilton J., Hui W.H. Directional spectra of wind-generated waves // Phyl. Trans. R. Soc. Lond. 1985. V. 315. № 1534. P. 509–562. https://doi.org/10.1098/rsta.1985.0054
  14. Gibson M.M., Lounder B.E. On the calculation of horizontal, turbulent free shear flows under gravitational influence // ASME J. Heat Transfer. 1976. V. 98. P. 81–87. https://doi.org/10.1115/1.3450474
  15. Kim K., Sung H.J. DNS of turbulent boundary layer with time–periodic blowing through a spanwise slot // Proceedings of the Asian Computational Fluid Dynamics Conference (5th). 2003. P. 835–842.
  16. Kitaigorodskii S.A., Lumley J.L. Wave turbulence interactions in the upper ocean. Part I: The energy balance of the interacting fields of surface wind waves and wind-induced three-dimensional turbulence // J. Phys. Oceanogr. 1983. V. 13. № 11. P. 1977–1987. https://doi.org/10.1175/1520-0485(1983)013< 1977:WTIITU>2.0.CO;2
  17. Kudryavtsev V., Shrira V., Dulov V., Malinovsky V. On the vertical structure of wind-driven sea currents // J. Phys. Oceanogr. 2008. V. 38. № 10. P. 2121–2144. https://doi.org/10.1175/2008JPO3883.1
  18. Kundu P.K. A numerical investigation of mixed-layer dynamics // J. Phys. Oceanogr. 1980. V. 10. № 2. P. 220–236. https://doi.org/10.1175/1520-0485(1980)010 <0220:ANIOML>2.0.CO;2
  19. Large, W.G., McWilliams J.C., Doney S.C. Oceanic vertical mixing: a review and a model with a nonlocal boundary layer parameterization. // Rev. Geophys. 1994. V. 32. № 4. P. 363–403. https://doi.org/10.1029/94RG01872
  20. Oakey, N.H. Determination of the rate of dissipation of turbulent energy from simultaneous temperature and velocity shear microstructure measurements // J. Phys. Oceanogr. 1982. V. 12. № 3. P. 256–271. https://doi.org/10.1175/1520-0485(1982)012 <0256:DOTROD>2.0.CO;2
  21. Stewart R.W., Grant H.L. Determination of the rate of dissipation of turbulent energy near the sea surface in the presence of waves // J. Geophys. Res. 1962. V. 67. № 8. Р. 3177–3180. https://doi.org/10.1029/JZ067i008p03177
  22. Terray E.A., Donelan M.A., Agrawal Y.C., Drennan W.M., Kahma K.K., Williams A.J., Hwang P.A., Kitaigorodskii S.A. Estimates of kinetic energy dissipation under breaking waves // J. Phys. Oceanogr. 1996. V. 26. № 5. P. 792–807. https://doi.org/10.1175/1520-0485(1996)026 <0792:EOKEDU>2.0.CO;2

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. An example of a change in the average scale of turbulent energy, normalized to the maximum value, in the boundary layers of the atmosphere and the sea on June 15-16, 2007: dynamic velocity in the air and the rms vertical pulsation velocity wf at a depth of 1 m, processed by an upper-pass filter with a threshold frequency of 1 Hz.

Download (12KB)
3. Fig. 2. Histogram of the distribution of the detected periodicities in the boundary layers of the atmosphere and the sea. – dynamic velocity in the air; wrms – RMS vertical velocity pulsations in water; Ud – flow velocity. Measurements were carried out in June 2005 and in June 2007 in the area of the oceanographic platform in Katsiveli.

Download (16KB)
4. Fig. 3. Global spectra of dynamic velocity in air and filtered RMS vertical pulsation velocity at a depth of 1 m, calculated using wavelet analysis. The data were averaged over 5 minutes, measurements were performed on June 17-18, 2007.

Download (15KB)
5. Fig. 4. The rate of dissipation of turbulent energy: experimental data and model calculations. The dots represent the experimental data; K&al. – model [Kudryavtsev et al., 2008]; Multisc – multiscale model [Chukharev, 2013]; NS stat – non–stationary model, V10 - wind speed at an altitude of 10 m, HS – height of significant waves, fp – frequency of the spectral peak of the wave.

Download (14KB)
6. Fig. 5. Model variation of the longitudinal component of the drift velocity.

Download (14KB)
7. Fig. 6. Model calculation of the change in the pulse flow in depth over time with periodic exposure to tangential wind stress on the sea surface (thick solid line) and with constant wind (thin marked line). Time step 0.5 h.

Download (27KB)
8. Fig. 7. Differences in the rate of dissipation in model calculations with constant and variable effects of wind on the sea surface of the same duration. The points are experimental values, NS is a nonstationary model with constant (stat) and variable (unsteady) pulse flow on the surface. The measurements were performed on October 16, 2009 (a) and September 21, 2015 (b).

Download (34KB)


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies