Retrieval of Nighttime Distributions of Mesosphere–Lower Thermosphere Characteristics from Satellite Data

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The database of SABER/TIMED satellite campaign includes the distributions of nighttime O, H and some other characteristics of mesosphere – lower thermosphere region which are retrieved from the measurements of OH* volume emission rate (near 2 μm), temperature and ozone. In the core of the retrieval procedure lies the assumption about photochemical equilibrium of nighttime ozone and airglow model that considers two excited states of OH (levels ν = 9, 8). In this work, a modified OH* model (with the rate constants updated according to contemporary publications) is used to retrieve O, H, OH, HO2 and the chemical heating rate at 80–100 km altitudes from to SABER/TIMED measurements in 2002–2021. It was found that the use of new parameters in the retrieval procedure leads to significant (up to 2 times or more) changes in the resulting spatial distributions of O, H and chemical heating rate, while the corresponding changes in OH and HO2 distributions are minor.

Full Text

Restricted Access

About the authors

М. Ю. Куликов

Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences; Lobachevsky State University of Nizhny Novgorod

Author for correspondence.
Email: kulm@ipfran.ru
Russian Federation, Nizhny Novgorod, Ulyanova str., 46, 603950; Gagarina prosp., 23, Nizhny Novgorod, 603022

M. V. Belikovich

Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences; Lobachevsky State University of Nizhny Novgorod

Email: kulm@ipfran.ru
Russian Federation, Nizhny Novgorod, Ulyanova str., 46, 603950; Gagarina prosp., 23, Nizhny Novgorod, 603022

A. G. Chubarov

Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences; Lobachevsky State University of Nizhny Novgorod

Email: kulm@ipfran.ru
Russian Federation, Nizhny Novgorod, Ulyanova str., 46, 603950; Gagarina prosp., 23, Nizhny Novgorod, 603022

S. O. Dementyeva

Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences

Email: kulm@ipfran.ru
Russian Federation, Nizhny Novgorod, Ulyanova str., 46, 603950

A. M. Feigin

Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences; Lobachevsky State University of Nizhny Novgorod

Email: kulm@ipfran.ru
Russian Federation, Nizhny Novgorod, Ulyanova str., 46, 603950; Gagarina prosp., 23, Nizhny Novgorod, 603022

References

  1. Adler-Golden S. Kinetic parameters for OH nightglow modeling consistent with recent laboratory measurements // J. Geophys. Res. 1997. V. 102. № A9. P. 19969–19976.
  2. Belikovich M.V., Kulikov M.Y., Grygalashvyly M., Sonnemann G.R., Ermakova T.S., Nechaev A.A., Feigin A.M. Ozone chemical equilibrium in the extended mesopause under the nighttime conditions // Adv. Space Res. 2018. V. 61. № 1. P. 426–432.
  3. Caridade P.J.S.B., Horta J.-Z.J., Varandas A.J.C. Implications of the O + OH reaction in hydroxyl nightglow modeling // Atmos. Chem. Phys. 2013. V. 13. P. 1–13.
  4. Evans W.F.J., Llewellyn E.J. Atomic hydrogen concentrations in the mesosphere and the hydroxyl emissions // J. Geophys. Res. 1973. V. 78. P. 323–326.
  5. Evans W.F.J., McDade I.C., Yuen J., Llewellyn E.J. A rocket measurement of the O2 infrared atmo spheric (0-0) band emission in the dayglow and a determination of the mesospheric ozone and atomic oxygen densities // Can. J. Phys. 1988. V. 66. P. 941–946.
  6. Fytterer T., von Savigny C., Mlynczak M., Sinnhuber M. Model results of OH airglow considering four different wavelength regions to derive night-time atomic oxygen and atomic hydrogen in the me sopause region // Atmos. Chem. Phys. 2019. V. 19. P. 1835–1851.
  7. Good R.E. Determination of atomic oxygen density from rocket borne measurements of hydroxyl airglow // Planet. Space Sci. 1976. V. 24. P. 389–395.
  8. Kalogerakis K.S., Matsiev D., Sharma R.D., Wintersteiner P.P. Resolving the mesospheric nighttime 4.3 µm emission puzzle: Laboratory demonstration of new mechanism for OH(v) relaxation // Geophys. Res. Lett. 2016. V. 43. P. 8835–8843.
  9. Kalogerakis K.S. A previously unrecognized source of the O2 atmospheric band emission in earth’s nightglow // Science Advances. 2019. V. 5. № 3. P. eaau9255.
  10. Kaufmann M., Zhu Y., Ern M., Riese M. Global distribution of atomic oxygen in the mesopause region as derived from SCIAMACHY O(1S) green line measurements // Geophys. Res. Lett. 2014. V. 41. P. 6274– 6280.
  11. Kulikov M.Y., Belikovich M.V., Grygalashvyly M., Sonnemann G.R., Ermakova T.S., Nechaev A.A., Feigin A.M. Daytime ozone loss term in the mesopause region // Ann. Geophys. 2017. V. 35. P. 677–682.
  12. Kulikov M.Y., Nechaev A.A., Belikovich M.V., Ermakova T.S., Feigin A.M. Technical note: Evaluation of the simultaneous measurements of mesospheric OH, HO2, and O3 under a photochemical equilibrium assumption – a statistical approach // Atmos. Chem. Phys. 2018a. V. 18. P. 7453–7471.
  13. Kulikov M.Yu., Belikovich M.V., Grygalashvyly M., Sonnemann G. R., Ermakova T.S., Nechaev A.A., Feigin A.M. Nighttime ozone chemical equilibrium in the mesopause region // J. Geophys. Res. 2018b. V. 123. P. 3228– 3242.
  14. Kulikov M.Yu., Nechaev A.A., Belikovich M.V., Vorobeva E.V., Grygalashvyly M., Sonnemann G.R., Feigin A.M. Boundary of nighttime ozone chemical equilibrium in the mesopause region from SABER data: Implications for derivation of atomic oxygen and atomic hydrogen // Geophys. Res. Lett. 2019. V. 46. № 2. P. 997–1004.
  15. Kulikov M.Y., Belikovich M.V., Grygalashvyly M., Sonnemann G.R., Feigin A.M. The revised method for retrieving daytime distributions of atomic oxygen and odd-hydrogens in the mesopause region from satellite observations // Earth, Planets and Space. 2022. V. 74. P. 44.
  16. Kulikov M.Yu., Belikovich M.V., Chubarov A.G., Dementeyva S.O., Fegin A.M. Boundary of nighttime ozone chemical equilibrium in the mesopause region: improved criterion of determining the boundary from satellite data // Adv. Space Res. 2023. V. 71. № 6. P. 2770–2780.
  17. Llewellyn E.J., McDade I.C., Moorhouse P., Lockerbie M.D. Possible reference models for atomic oxygen in the terrestrial atmosphere // Adv. Space Res. 1993. V. 13. P. 135–144.
  18. Llewellyn E.J., McDade I.C. A reference model for atomic oxygen in the terrestrial atmosphere // Adv. Space Res. 1996. V. 18. P. 209–226.
  19. Makhlouf U.B., Picard R.H., Winick J.R. Photochemicaldynamical modeling of the measured response of airglow to gravity waves. 1. Basic model for OH airglow // J. Geophys. Res. 1995. V. 100. P. 1128911311.
  20. McDade I.C., Llewellyn E.J., Harris F.R. Atomic oxygen concentrations in the lower auroral thermosphere // Adv. Space Res. 1985. V. 5. № 7. P. 229–232.
  21. McDade I.C., Llewellyn E.J. Mesospheric oxygen atom densities inferred from night-time OH Meinel band emission rates // Planet. Space Sci. 1988. V. 36. P. 897–905.
  22. Mlynczak M.G., Marshall B.T., Martin-Torres F.J., Russell III J.M., Thompson R.E., Remsberg E.E., Gordley L.L. Sounding of the Atmosphere using Broadband Emission Radiometry observations of daytime mesospheric O2(a1) 1.27 µm emission and derivation of ozone, atomic oxygen, and solar and chemical energy deposition rates // J. Geophys. Res. 2007. V. 112. P. D15306.
  23. Mlynczak M.G., Hunt L.A., Mast J.C., Marshall B.T., Russell III J. M., Smith A.K., Siskind D.E., Yee J.-H., Mertens C.J., Martin-Torres F.J., Thompson R.E., Drob D.P., Gordley L.L. Atomic oxygen in the mesosphere and lower thermosphere derived from SABER: Algorithm theoretical basis and measurement uncertainty // J. Geophys. Res. 2013a. V. 118. P. 5724–5735.
  24. Mlynczak M.G., Hunt L.H., Mertens C.J., Marshall B.T., Russell III J.M., López-Puertas M., Smith A.K., Siskind D.E., Mast J.C., Thompson R.E., Gordley L.L. Radiative and energetic constraints on the global annual mean atomic oxygen concentration in the mesopause region // J. Geophys. Res. 2013b. V. 118. P. 5796–5802.
  25. Mlynczak M.G., Hunt L.A., Marshall B.T., Mertens C.J., Marsh D.R., Smith A.K., Russell J.M., Siskind D.E., Gordley L.L. Atomic hydrogen in the mesopause region derived from SABER: Algorithm theoretical basis, measurement uncertainty, and results // J. Geophys. Res. 2014. V. 119. P. 3516–3526.
  26. Mlynczak M.G., Hunt L.A., Russell J.M., Marshall B.T. Updated SABER night atomic oxygen and implications for saber ozone and atomic hydrogen // Geophys. Res. Lett. 2018. V. 45. P. 5735–5741.
  27. Panka P.A., Kutepov A.A., Kalogerakis K.S., Janches D., Russell J.M., Rezac L., Feofilov A.G., Mlynczak M.G., Yiğit E. Resolving the mesospheric nighttime 4.3 µm emission puzzle: Comparison of the CO2(v3) and OH(v) emission models // Atm. Chem. Phys. 2017. V. 17. P. 9751–9760.
  28. Panka P.A., Kutepov A.A., Rezac L., Kalogerakis K.S., Feofilov A.G., Marsh D., Janches D., Yiğit E. Atomic oxygen retrieved from the SABER 2.0‐ and 1.6‐µm radiances using new first‐principles nighttime OH(v) model // Geophys. Res. Lett. 2018. V. 45. P. 5798–5803.
  29. Panka P.A., Kutepov A.A., Zhu Y., Kaufmann M., Kalogerakis K.S., Rezac L., Feofilov A.G., Marsh D.R., Janches D. Simultaneous retrievals of nighttime O(3P) and total OH densities from satellite observations of Meinel band emissions // Geophys. Res. Lett. 2021. V. 48. P. e2020GL091053.
  30. Pendleton W.R., Baker K.D., Howlett L.C. Rocket-based investigations of O(3P), O2(a1) and OH* (v = 1,2) during the solar eclipse of 26 February 1979 // J. Atm. Terr. Phys. 1983. V. 45. № 7. P. 479–491.
  31. Sharma R.D., Wintersteiner P.P., Kalogerakis K.S. A new mechanism for OH vibrational relaxation leading to enhanced CO2 emissions in the nocturnal mesosphere // Geophys. Res. Lett. 2015. V. 42. P. 4639–4647.
  32. Siskind D.E., Marsh D.R., Mlynczak M.G., Martin-Torres F.J., Russell III J.M. Decreases in atomic hydrogen over the summer pole: Evidence for dehydration from polar mesospheric clouds? // Geophys. Res. Lett. 2008. V. 35. P. L13809.
  33. Siskind D.E., Mlynczak M.G., Marshall T., Friedrich M., Gumbel J. Implications of odd oxygen observations by the TIMED/SABER instrument for lower D region ionospheric modeling // J. Atmos. Sol. Terr. Phys. 2015. V. 124. P. 63–70.
  34. Smith A.K., Marsh D.R., Mlynczak M.G., Mast J.C. Temporal variations of atomic oxygen in the upper mesosphere from SABER // J. Geophys. Res. 2010. V. 115. P. D18309.
  35. Thomas R.J. Atomic hydrogen and atomic oxygen density in the mesosphere region: Global and seasonal variations deduced from Solar Mesosphere Explorer near-infrared emissions // J. Geophys. Res. 1990. V. 95. P. 16457–16476.
  36. Xu J., Gao H., Smith A.K., Zhu Y. Using TIMED/SABER nightglow observations to investigate hydroxyl emission mechanisms in the mesopause region // J. Geophys. Res. 2012. V. 117. № D2. P. D02301.
  37. Zhu Y., Kaufmann M. Atomic oxygen abundance retrieved from SCIAMACHY hydroxyl nightglow measurements // Geophys. Res. Lett. 2018. V. 45. P. 9314–9322.
  38. Zhu Y., Kaufmann M. Consistent nighttime atomic oxygen concentrations from O2 A‐band, O(1S) green‐Line, and OH airglow measurements as performed by SCIAMACHY // Geophys. Res. Lett. 2019. V. 46. P. 8536–8545.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Night distributions of O (left column, in cm–3) and ORO (right column) averaged by longitude and time (for each season 2002-2021). 1st row – December, January, February, 2nd row – March, April, May, 3rd row – June, July, August, 4th row – September, October, November.

Download (804KB)
3. Fig. 2. The night distributions H (left column, in cm–3) and ORN (right column) averaged by longitude and time (for each season 2002-2021). 1st row – December, January, February, 2nd row – March, April, May, 3rd row – June, July, August, 4th row – September, October, November.

Download (750KB)
4. Fig. 3. The night distributions of OH (left column, in cm–3) and ORON (right column) averaged by longitude and time (for each season 2002-2021). 1st row – December, January, February, 2nd row – March, April, May, 3rd row – June, July, August, 4th row – September, October, November.

Download (546KB)
5. Fig. 4. Night distributions of NO2 (left column, in cm–3) and ORNO2 (right column) averaged by longitude and time (for each season 2002-2021). 1st row – December, January, February, 2nd row – March, April, May, 3rd row – June, July, August, 4th row – September, October, November.

Download (455KB)
6. Fig. 5. Longitude and time averaged (for each season 2002-2021) nighttime distributions of the chemical air heating rate CHP (left column, in K/day) and OPCHP (right column). 1st row – December, January, February, 2nd row – March, April, May, 3rd row – June, July, August, 4th row – September, October, November.

Download (535KB)
7. Fig. 6. Vertical O profiles averaged in the range of 0-20°N for autumn 2005 (left) and winter 2005-2006 (right), respectively, corresponding to the upgraded OH model* (blue lines) and the models [Mlynczak et al., 2013a, 2018] (red) compared with the recovery results (black lines) of this component according to measurements of the O(1S) luminescence by the SCIAMACHY device [Kaufmann et al., 2014].

Download (184KB)


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies