About Height of the Surface Air Layer by Sodar Data

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Average empirical estimations of the surface air layer height in Moscow have been received by the data of long-term acoustic remote sensing of the atmosphere using MODOS Doppler sodar of METEK (Germany) production. Based on the assumption that the average conditions are close to neutral stratification, this height, as the top of the quasi-linear section of the average long-term wind velocity profile in semi-logarithmic coordinates, is 40–60 m. The wind rotation height, i. e. the height of intersection of day and night wind profiles is on average 95 meters per year. The roughness length in conditions of loose but high urban development in vicinity of Moscow State University in Moscow is 5 m.

According to the criterion of the constant wind direction in the surface air layer, its height appears in the average monthly wind direction profiles over the “dead zone” of the sodar (40 m) in approximately one case out of three and usually amounts to 60 m, less often 80 or 100 m. In the rest cases, it is apparently masked by “dead zone”. The average height of the surface layer according to this approach is probably a little less than 50 m, which is close to the estimate obtained from the logarithmic distribution of wind velocity with height in this layer. The daily course of the surface air layer height is noted by the largest values in the afternoon (80–100 m in summer under conditions of prevailing unstable stratification and 60–80 m in winter) and the smallest ones (less than 40 m) in the late evening and at night in summer and from evening to noon in winter.

Full Text

Restricted Access

About the authors

M. A. Lokoshchenko

Lomonosov Moscow State University

Author for correspondence.
Email: loko@geogr.msu.su

географический факультет

Russian Federation, Leninskie Gory, 1, Moscow, 119992

References

  1. Белинский В.А. Динамическая метеорология. М.-Л.: ОГИЗ, Гостехиздат, 1948. 703 с.
  2. Будыко М.И. Испарение в естественных условиях. Л.: Гидрометеоиздат, 1948. 136 с.
  3. Зилитинкевич С.С. Динамика пограничного слоя атмосферы. Л.: Гидрометеоиздат, 1970. 292 с.
  4. Красненко Н.П. Акустическое зондирование атмосферного пограничного слоя. Томск: изд-во ИОМ СО РАН, 2001. 280 с.
  5. Лайхтман Д.Л. Физика пограничного слоя атмосферы. Л.: Гидрометеоиздат, 1961. 254 с.
  6. Ландсберг Г.Е. Климат города. Л.: Гидрометеоиздат, 1983. 248 с.
  7. Локощенко М.А. О ветровом режиме нижней атмосферы над Москвой по данным многолетнего акустического зондирования // Метеорология и гидрология. 2014. № 4. С. 19–31.
  8. Локощенко М.А. Направление ветра в Москве // Метеорология и гидрология. 2015. № 10. С. 5–15.
  9. Локощенко М.А., Алексеева Л. И., Ахиярова К. И. О связи ветрового режима нижней атмосферы с синоптическими условиями и явлениями погоды // Метеорология и гидрология. 2016. № 7. С. 15–28.
  10. Матвеев Л.Т. Основы общей метеорологии. Физика атмосферы. Л.: Гидрометеоиздат, 1984. 751 с.
  11. Монин А.С., Яглом А.М. Статистическая гидромеханика. Механика турбулентности. Часть 1. М.: Наука, 1965. 640 с.
  12. Обухов А.М. Турбулентность и динамика атмосферы. Л.: Гидрометеоиздат, 1988. 414 с.
  13. Оке Т.Р. Климаты пограничного слоя. Л.: Гидрометеоиздат, 1982. 360 с.
  14. Орленко Л.Р. Анализ экспериментального материала по суточному ходу температуры воздуха. Труды ГГО, выпуск 53(15) под ред. Д.Л. Лайхтмана. С. 14–25. Л.: Гидрометеоиздат, 1955.
  15. Справочник по гидрометеорологическим приборам и установкам. Л.: Гидрометеоиздат, 1971. 372 с.
  16. Степаненко С.Н., Волошин В.Г., Курышина В.Ю., Агайар Е.В. Определение высоты пограничного слоя атмосферы по наземным метеорологическим наблюдениям // ScienceRise. 2016. № 7/1 (24). С. 6–10.
  17. Хромов С.П., Мамонтова Л. И. Метеорологический словарь. Л.: Гидрометеоиздат, 1974. 568 с.
  18. Lokoshchenko M.A. and Nikitina N. G. Profiles of wind direction and studying of the ground air layer height by use of the sodar sounding // Extended Abstracts of Presentations from the 16th ISARS, Boulder, Colorado, USA, 5–8 June 2012. 2012. P. 130–132.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The MODOS Doppler radar antenna system (left) and an anemometric tower with wind sensors (right) at the Moscow State University Meteorological Observatory. The arrows show anemometers at two heights.

Download (152KB)
3. Fig. 2. Wind velocity profile in the layer from 7 to 440 m according to the MODOS Doppler radar and contact measurements on average for 2004-2012 at the Moscow State University Meteorological Observatory. Confidence intervals are calculated with a confidence probability of 0.95.

Download (26KB)
4. Fig. 3. Profiles of wind direction according to the radar data on average for individual months of sounding. Confidence intervals are calculated with a significance level of 5%.

Download (289KB)


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies