The Response of the Tropospheric Dynamics to Extreme States of the Stratospheric Polar Vortex during Enso Phases in Idealized Model Experiments

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Extreme states of the stratospheric polar vortex (SPV) affect the average position of the main propagation trajectories of synoptic vortices in the Northern Hemisphere over a time period from 2 weeks to 2 months. This time scale is considered to be one of the most difficult periods in forecasting. Based on the analysis of data from idealized numerical experiments on the Isca platform, we studied the processes of formation of anomalous positions of storm tracks in the Atlantic-European region as a response to sudden stratospheric warmings and events of extremely strong SPV during various phases of the El Niño Southern Oscillation. It was shown that in winter it is impossible to say unambiguously about the southward displacement of the Atlantic storm track during El Niño events without taking into account the intensity of SPV. The intensity of SPV, expressed as the zonal component of wind speed, averaged along 60° N at the level of 10 hPa, has its maximum predictive potential during El Niño.

About the authors

Y. A. Zyulyaeva

Shirshov Institute of Oceanology RAS; Faculty of Geography and Geoinformation Technology, HSE University

Email: dasha.sobaeva@gmail.com
Russia, 117997, Moscow, 36 Nakhimovsky ave.; Russia, 109028, Moscow, 11 Pokrovsky Bulvar

D. A. Sobaeva

Shirshov Institute of Oceanology RAS; Moscow Institute of Physics and Technology

Author for correspondence.
Email: dasha.sobaeva@gmail.com
Russia, 117997, Moscow, 36 Nakhimovsky ave.; Russia, 141701, Moscow Region, Dolgoprudny, 9 Institutskiy per.

S. K. Gulev

Shirshov Institute of Oceanology RAS

Email: dasha.sobaeva@gmail.com
Russia, 117997, Moscow, 36 Nakhimovsky ave.

References

  1. Варгин П.Н., Медведева И.В. Исследование температурного и динамического режимов внетропической атмосферы Северного полушария в период внезапного стратосферного потепления зимой 2012-2013 гг. // Изв. РАН. Физика атмосферы и океана. 2015. Т. 51. №. 1. С. 20–20.
  2. Коленникова М.А., Варгин П.Н., Гущина Д.Ю. Влияние Эль-Ниньо на стратосферу Арктики по данным моделей CMIP5 и реанализа // Метеорология и гидрология. 2021. №. 6. С. 5–23.
  3. Нерушев А.Ф., Вишератин К.Н., Ивангородский Р.В. Динамика высотных струйных течений по данным спутниковых измерений и их связь с климатическими параметрами и крупномасштабными атмосферными явлениями // Исследование Земли из космоса. 2018. № 6. С. 24–38.
  4. Ambaum M.H.P., Hoskins B. . The NAO troposphere–stratosphere connection // J. Clim. 2002. V. 15. № 14. P. 1969–1978.
  5. Anstey J.A., Scinocca J.F., Keller M. Simulating the QBO in an atmospheric general circulation model: Sensitivity to resolved and parameterized forcing // J. Atmos. Sci. 2016. V. 73. № 4. P. 1649–1665.
  6. Asbaghi G., Joghataei M., Mohebalhojeh A.R. Impacts of the QBO on the North Atlantic and Mediterranean storm tracks: An energetic perspective // Geophys. Res. Lett. 2017. V. 44. № 2. P. 1060–1067.
  7. Baldwin M.P. et al. Weather from the stratosphere? // Science. 2003. V. 301. № 5631. P. 317–319.
  8. Baldwin M.P., Dunkerton T.J. Stratospheric harbingers of anomalous weather regimes // Science. 2001. V. 294. № 5542.
  9. Baldwin M.P., Thompson D.W.J. A critical comparison of stratosphere–troposphere coupling indices // Q. J. R. Meteorol. Soc.: A journal of the atmospheric sciences, applied meteorology and physical oceanography. 2009. V. 135. № 644. P. 1661–1672.
  10. Blackmon M.L. A climatological spectral study of the 500 mb geopotential height of the Northern Hemisphere // J. Atmos. Sci. 1976. V. 33. № 8. P. 1607–1623.
  11. Blackmon M.L. et al. An observational study of the Northern Hemisphere wintertime circulation // J. Atmos. Sci. 1977. V. 34. № 7. P. 1040–1053.
  12. Blackmon M.L., Lee Y.H., Wallace J.M. Horizontal structure of 500 mb height fluctuations with long, intermediate and short time scales // J. Atmos. Sci. 1984. V. 41. № 6. P. 961–980.
  13. Butler A.H. et al. Defining sudden stratospheric warmings // Bull. Am. Meteorol. Soc. 2015. V. 96. № 11. P. 1913–1928.
  14. Chang E.K.M. et al. Storm-track activity in IPCC AR4/CMIP3 model simulations // J. Clim. 2013. V. 26. № 1. P. 246–260.
  15. Chang E., Lee S., Swanson K. Storm Track Dynamics // J. Climate. 2002. V. 15. P. 2163–2182.
  16. Charlton A.J., Polvani L.M. A new look at stratospheric sudden warmings. Part I: Climatology and modeling benchmarks // J. Clim. 2007. V. 20. № 3. P. 449–469.
  17. Domeisen D.I.V., Garfinkel C.I., Butler A.H. The teleconnection of El Niño Southern Oscillation to the stratosphere // Rev. Geophys. 2019. V. 57. № 1. P. 5–47.
  18. Duchon C.E. Lanczos Filtering in One and Two Dimensions // J. Appl. Meteorol. 1979. V. 18. P. 1016–1022.
  19. Fink A.H. et al. The European storm Kyrill in January 2007: synoptic evolution, meteorological impacts and some considerations with respect to climate change // Nat. Hazards Earth Syst. Sci. 2009. V. 9. № 2. P. 405–423.
  20. Fortuin J.P.F., Langematz U. Update on the global ozone climatology and on concurrent ozone and temperature trends // Proc. SPIE. 1995. V. 2311. P. 207–216.
  21. Graff L.S., LaCasce J.H. Changes in the extratropical storm tracks in response to changes in SST in an AGCM // J. Clim. 2012. V. 25. № 6. P. 1854–1870.
  22. Gushchina D. et al. On the relationship between ENSO diversity and the ENSO atmospheric teleconnection to high-latitudes // Int. J. Climatol. 2022. V. 42. № 2. P. 1303–1325.
  23. Held I.M., Lyons S.W., Nigam S. Transients and the extratropical response to El Niño // J. Atmos. Sci. 1989. V. 46. № 1. P. 163–174.
  24. Hitchcock P., Simpson I.R. The downward influence of stratospheric sudden warmings //J. Atmos. Sci. 2014. V. 71. № 10. P. 3856–3876.
  25. Horel J.D., Wallace J.M. Planetary-scale atmospheric phenomena associated with the Southern Oscillation // Mon. Weather Rev. 1981. V. 109. № 4. P. 813–829.
  26. Hoskins B.J., Karoly D.J. The steady linear response of a spherical atmosphere to thermal and orographic forcing // J. Atmos. Sci. 1981. V. 38. № 6. P. 1179–1196.
  27. Hoskins B.J., Pearce R. Large-Scale Dynamical Processes in the Atmosphere. London, N.Y.: Academic Press, 1983. 397 p.
  28. Hoskins B.J., Valdes P.J. On the existence of storm-tracks // J. Atmos. Sci. 1990. V. 47. № 15. P. 1854–1864.
  29. Hurrell J.W. et al. A new sea surface temperature and sea ice boundary dataset for the Community Atmosphere Model // J. Clim. 2008. V. 21. № 19. P. 5145–5153.
  30. Jucker M., Gerber E.P. Untangling the annual cycle of the tropical tropopause layer with an idealized moist model // J. Clim. 2017. V. 30. № 18. P. 7339–7358.
  31. Karpechko A.Y. et al. Predictability of downward propagation of major sudden stratospheric warmings // Q. J. R. Meteorol. Soc. 2017. V. 143. № 704. P. 1459–1470.
  32. Kidston J. et al. Stratospheric influence on tropospheric jet streams, storm tracks and surface weather // Nat. Geosci. 2015. V. 8. № 6. P. 433–440.
  33. Kolstad E.W., Breiteig T., Scaife A.A. The association between stratospheric weak polar vortex events and cold air outbreaks in the Northern Hemisphere // Q. J. R. Meteorol. Soc. 2010. V. 136. № 649. P. 886–893.
  34. Kretschmer M. et al. The different stratospheric influence on cold-extremes in Eurasia and North America // NPJ Clim. Atmos. Sci. 2018. V. 1. № 1. P. 44.
  35. Kug J.S., Jin F.F., An S.I. Two types of El Niño events: cold tongue El Niño and warm pool El Niño // J. Clim. 2009. V. 22. № 6. P. 1499–1515.
  36. Leathers D.J., Yarnal B., Palecki M.A. The Pacific/North American teleconnection pattern and United States climate. Part I: Regional temperature and precipitation associations // J. Clim. 1991. V. 4. № 5. P. 517–528.
  37. L’Heureux M.L., Thompson D.W.J. Observed relationships between the El Niño–Southern Oscillation and the extratropical zonal-mean circulation // J. Clim. 2006. V. 19. № 2. P. 276–287.
  38. Lu J., Chen G., Frierson D.M.W. Response of the zonal mean atmospheric circulation to El Niño versus global warming // J. Clim. 2008. V. 21. № 22. P. 5835–5851.
  39. Martineau P., Son S.W. Onset of circulation anomalies during stratospheric vortex weakening events: The role of planetary-scale waves // J. Clim. 2015. V. 28. № 18. P. 7347–7370.
  40. Orlanski I. Poleward deflection of storm tracks // J. Atmos. Sci. 1998. V. 55. № 16. P. 2577–2602.
  41. Rayner N.A.A. et al. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century // J. Geophys. Res. Atmos. 2003. V. 108. № D14.
  42. Reynolds R.W. et al. Daily high-resolution-blended analyses for sea surface temperature // J. Clim. 2007. V. 20. № 22. P. 5473–5496.
  43. Sampe T. et al. Significance of a midlatitude SST frontal zone in the formation of a storm track and an eddy-driven westerly jet // J. Clim. 2010. V. 23. № 7. P. 1793–1814.
  44. Santoso A., Mcphaden M., Cai W. The defining characteristics of ENSO extremes and the strong 2015/2016 El Nino // Rev. Geophys. 2017. V. 55. № 4. P. 1079–1129.
  45. Schneidereit A., Schubert S., Vargin P., Lunkeit F., Zhu X., Peters D., Fraedrich K. Large scale flow and the longlasting blocking high over Russia: Summer 2010 // Mon. Wea. Rev. 2012. V. 140. P. 2967–2981.
  46. Seager R. et al. Mechanisms of hemispherically symmetric climate variability // J. Clim. 2003. V. 16. № 18. P. 2960–2978.
  47. Sobaeva D., Zyulyaeva Y., Gulev S. ENSO and PDO Effect on Stratospheric Dynamics in Isca Numerical Experiments // Atmosphere. 2023. V. 14. № 459. https://doi.org/10.3390/atmos14030459
  48. Sun C., Li J., Ding R. Strengthening relationship between ENSO and western Russian summer surface temperature. // Geophys. Res. Lett. 2016. V. 43. P. 843–851.
  49. Thomson S.I., Vallis G.K. Atmospheric response to SST anomalies. Part I: Background-state dependence, teleconnections, and local effects in winter // J. Atmos. Sci. 2018. V. 75. № 12. P. 4107–4124.
  50. Tilinina N. et al. Comparing cyclone life cycle characteristics and their interannual variability in different reanalyses // J. Clim. 2013. V. 26. № 17. P. 6419–6438.
  51. Trenberth K.E. The definition of El Nino // Bull. Am. Meteorol. Soc. 1997. V. 78. № 12. P. 2771–2778.
  52. Trenberth K.E. et al. Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures // J. Geophys. Res. Oceans. 1998. V. 103. № C7. P. 14291–14324.
  53. Ulbrich U. et al. The central European floods of August 2002: Part 1-Rainfall periods and flood development // Weather. 2003. V. 58. № 10. P. 371–377.
  54. Vallis G.K. et al. Isca, v1. 0: A framework for the global modelling of the atmospheres of Earth and other planets at varying levels of complexity // Geosci. Model Dev. 2018. V. 11. № 3. P. 843–859.
  55. Vargin P. N. et al. Investigation of boreal storm tracks in historical simulations of INM CM5 and reanalysis data // IOP Conference Series: Earth and Environmental Science. 2019. V. 386. № 1. P. 012007.
  56. White I. et al. The downward influence of sudden stratospheric warmings: Association with tropospheric precursors // J. Clim. 2019. V. 32. № 1. P. 85–108.
  57. Yin J.H. A consistent poleward shift of the storm tracks in simulations of 21st century climate // Geophys. Res. Lett. 2005. V. 32. № 18.
  58. https://www.gfdl.noaa.gov/model-development.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (730KB)
3.

Download (202KB)
4.

Download (978KB)
5.

Download (983KB)
6.

Download (1MB)
7.

Download (2MB)
8.

Download (2MB)
9.

Download (374KB)


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies