Statistical and Wavelet Transform-Based Study of the Latitudinal Ionospheric Response to an Annular Solar Eclipse on June 21, 2020

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The ionosphere is a very complex and variable part of the atmosphere and it is controlled by solar activity. A solar eclipse is one of the phenomena which depicts a major impact on the ionosphere. In this study, we have analyzed the TEC data of 11 IGS-TEC stations (including one GPS station namely Agra) corresponding to a solar eclipse of June 21, 2020 for the duration of June 07–21, 2020. The TEC variations show lower values on the eclipse’s day in comparison to the other days from the mean of each station except some of the stations like Agra (≈2 TECU), BHR4 (≈1TECU), IISC (≈0.5TECU) have shown the enhanced TEC variations. These results are examined by applying wavelet transform techniques such as continuous wavelet transforms (CWTs), and wavelet decomposition over the average, addition, and multiplication of TEC data of 11 stations for the duration of 9:30 AM to 3:30 PM on the eclipse’s day. These results match very well with our statistical results and depict a better representation of the TEC variations during the solar eclipse. The wavelet decomposition of TEC variation has provided that TEC is affected by solar eclipse globally. These TEC variations are interpreted in terms of the mechanisms available in the literature.

About the authors

Devbrat Pundhir

Seismo-electromagnetics and Space Research Laboratory (SESRL), Department of Physics, Raja Balwant Singh Engineering Technical Campus

Author for correspondence.
Email: devbratpundhir@gmail.com
India, 283105, Agra, Bichpuri

Birbal Singh

Seismo-electromagnetics and Space Research Laboratory (SESRL), Department of Electronics and Communication,
Raja Balwant Singh Engineering Technical Campus

Author for correspondence.
Email: bbsagra@gmail.com
India, 283105, Agra, Bichpuri

Rajpal Singh

Department of Physics, GLA University

Author for correspondence.
Email: rp.singh@gla.ac.in
India, 281406, Mathura

References

  1. Adeniyi J.O., Radicella S.M., Adimula I.A., Willoughby A.A., Oladipo O.A., and Olawepo O. Signature of the 29 March 2006 eclipse on the ionosphere over an equatorial station, J. of Geophys Res., 2007, V. 112.
  2. Appleton E.V. Two Anomalies in the Ionosphere. Nature, 1946, V. 157. P. 691–691. https://doi.org/10.1038/157691a0
  3. Boitman O.N., Kalikhman A.D., and Tashchilin A.V. The mid-latitude ionosphere during the total solar eclipse of March 9, 1997, J. Geophys. Res., 1999, V. 104. P. 28197–28206.
  4. Burton E.T., and Boardman E.M. Effects of Solar Eclipse on Audio Frequency Atmospherics, Nature, 1933, V. 131. № 3299. P. 81–82. https://doi.org/10.1038/131081a0
  5. Chen A.-H., Yu S.-B., Xu J.-S. Ionospheric response to a total solar eclipse deduced by the GPS Beacon observations, Wuhan University J. Nat. Sci., 1999, V. 4. № 4. P. 439–444.
  6. Cherniak I., and Zakharenkova I. Ionospheric Total Electron Content Response to the Great American Solar Eclipse of 21 August 2017, Geophys. Res. Lett., 2018, V. 45, P. 1199–1208.
  7. Chimonas G., and Hines C.O. Atmospheric gravity waves induced by a solar Eclipse. J. Geophys. Res., 1970. V. 75. P. 857–875.
  8. Coster A.J., Goncharenko L., Zhang S., Erickson P.J., Rideout W., & Vierinen J., GNSS observations of ionospheric variations during the 21 August 2017 solar eclipse. Geophys. Res. Lett., 2017, V. 17. P. 349–352.
  9. Chu Y.H., Brahmanandam P.S. Wang C.Y. and Su C.L. Co-ordinated observations of sporadic E using Chung-Li 30 MHz radar, ionosonde and FORMOSAT 3/COSMIC satellites. J. Atmos. Sol. Terr. Phys., 2010, V. 73. P. 883–894.
  10. Dang T., Le J., Wang W., Zhang B., Burns A., Le H., Wu Q., Ruan H., Dou X., and Wan W. Global Responses of the Coupled Thermosphere and Ionosphere System to the August 2017 Great American Solar Eclipse, J. Geophys. Res.: Space Phys., 2018. V. 123, № 8, P. 7040–7050.
  11. Dang T., Lei J.H., Wang W.B., Yan M.D., Ren D.X., and Huang F.Q., Prediction of the thermospheric and ionospheric responses to the 21 June 2020 annular solar eclipse, Earth and Planetary Physics, 2020, V. 4. P. 231–237.
  12. Davis M.J., and Da Rosa A.V. Possible Detection of Atmospheric Gravity Waves generated by the Solar Eclipse, Nature, 1970, V. 226. P. 1123.
  13. Dear V., Husin A., Anggarani S., Harjosuwito J., and Pradipta R. Ionospheric effects during the total solar eclipse over Southeast Asia-Pacific on 9 March 2016: Part 1. Vertical movement of plasma layer and reduction in electron plasma density, J. Geophys. Res.: Space Phys., 2020, V. 125.
  14. Ding F., Wan W., Ning B., Liu L., Le H., Xu G., Wang M., Li G., Chen Y., Ren Z., Xiong B., Hu L., Yue X., Zhao B., Li F., and Yang M., GPS TEC response to the 22 July 2009 total solar eclipse in East Asia, J. Geophys. Res., 2010, V. 115. P.1–8.
  15. Fritts D.C., and Luo Z. Gravity wave forcing in the middle atmosphere due to reduced ozone heating during a solar eclipse. J. Geophys. Res., 1993, V. 98. P. 3011–3021.
  16. Grossman A., and Morlet J. Decomposition of Hardy functions into square integrable wavelets of constant shape, SIA-M J. Math. Anal., 1984, V. 15. № 4. P. 726–736.
  17. Haridas M.K.M., and Manju G. On the response of the ionospheric F region over Indian low-latitude station Gadanki to the annular solar eclipse of 15 January 2010, J. Geophys. Res., 2012, V. 117. A01302. P. 1—7. https://doi.org/10.1029/2011JA016695
  18. He L., Wu L., Pulinets S., Liu S., and Yang F. A nonlinear background removal method for seismo-ionospheric anomaly analysis under a complex solar activity scenario: A case study of the M9.0 Tohoku earthquake, Adv. Space Res., 2012, V. 50. P. 211–220.
  19. Hilton M.L. 1997.Wavelet and wavelet packet compression of electrocardiograms, IEEE T. Bio-Med Eng. 44(5), 394–402.
  20. Huba J.D., and Drob D. SAMI3 prediction of the impact of the 21 August 2017 total solar eclipse on the ionosphere/plasmasphere system, Geophys. Res. Lett., 2017, V. 44. P. 5928–5935.
  21. Jakowski N., Stankov S.M., Wilken V., Borries C., Altadill D., Chum J., Buresova D., Boska J., Sauli P., Hruska F., and Cander Lj R., Ionospheric behavior over Europe during the solar eclipse of 3 October 2005, J. Atmos. Sol.-Terr. Phys., 2008, V. 70. № 6. P. 836—853. https://doi.org/10.1016/j.jastp.2007.02.016
  22. Jonah O.F., Goncharenko L., Erickson P.J., Zhang S., Coster A., Chau J.L, Paula E.R. de, Rideout W. Anomalous behavior of the equatorial ionization anomaly during the July 2, 2019 solar eclipse, J. Geophys. Res., 2020, V. 125. P. 1–12.
  23. Kelley M.C., Fejer B.G., Gonzales C.A. An explanation for anomalous equatorial ionospheric electric fields associated with a northward turning of the interplanetary magnetic field, J. Geophy. Res., 1979, V. 6(4), P. 301–304.
  24. Kumar S., and Singh A.K. Changes in total electron content (TEC) during the annular solar eclipse of 15 January 2010, Adv. Space Res., 2012, V. 49. P. 75–82.
  25. Kumar S., Singh A.K. and Singh R.P. Ionospheric response to total solar eclipse of 22 July 2009 in different Indian regions, Annales Geophysicae, 2013, V. 31. № 9, P. 1549–1558.
  26. Le H., Liu L., Yue X., Wan W., and Ning B., Latitudinal dependence of the ionospheric response to solar eclipses, J. Geophys. Res., 2009, V. 114. A07308, 2009. https://doi.org/10.1029/2009JA014072
  27. Le H., Liu L., Yue X., and Wan W. The midlatitude F2 layer during solar eclipses: Observations and modeling, J. Geophys. Res., 2008, V. 113. A08309.
  28. Ledig P.G., Jones M.W., Giesecke A.A., and Chernosky E.J. Effects on the ionosphere at, Peru, of the solar eclipse, January 25, 1944, Terr. Magn. Atmos. Electr., 1946, V. 51. № 3. P. 411—418. https://doi.org/10.1029/TE051i003p00411
  29. Mallat S. Zero-crossings of a wavelet transform, IEEE Transactions on Information Theory, 1991, V. 37. P. 1019–1033.
  30. Munro G.H., and Heisler L.H. Ionospheric records of solar eclipses, J. Atmos. Sol. Terr. Phys., 1958, V. 12. № 1. P. 57—67. https://doi.org/10.1016/0021-9169(58)90008-4
  31. Nelli N.R., Temimi M., Fonseca R., Francis D., Nesterov O., Abida R., Weston M., and Kumar A. Anatomy of the Annular Solar Eclipse of 26 December 2019 and Its Impact on Land–Atmosphere Interactions Over an Arid Region, IEEE Geosci. & Remote Sensing Lett., 2020, P. 1–5. https://doi.org/10.1109/LGRS.2020.3003084
  32. Paul A., Das T., Ray S., Das A., Bhowmick D., and DasGupta A. Response of the equatorial ionosphere to the total solar eclipse of 22 July 2009 and annular eclipse of 15 January 2010 as observed from a network of stations situated in the Indian longitude sector, Ann. Geophysicae, 2011, V. 29. № 10. P. 1955–1965.
  33. Pundhir D., Singh B., Singh O.P., and Gupta S.K. A morphological study of low latitude ionosphere and its implication in identifying earthquake precursors, J. Ind. Geophys. Union, 2017. V. 21. № 3. P. 214–222.
  34. Srigutomo W., Singarimbun A., Meutia W., Djaja I Gede Putu Fadjar Soerya Muslim B., and Abadi P. Decrease of total electron content during the 9 March 2016 total solar eclipse observed at low latitude stations, Indonesia, Ann. Geophysicae, 2019. https://doi.org/10.5194/angeo-2019-11
  35. Stankov S.M., Bergeot N., Berghmans D., Bolsee D., Bruyninx C. et al., Multi –instrument observations of the solar eclipse on 20 March 2015 and its effects on the ionosphere over Belgium and Europe, J. Space Weather Space Clim., 2017, V. 7. A19. https://doi.org/10.1051/swsc/2017017
  36. Uma G., Brahmanandam P.S., Srinivasu V.K.D., Prasad D.S.V.V.D., Gowtam V.S., Ram T.S., and Chud Y.H. Ionospheric responses to the 21 August 2017 great American solar eclipse – A multi-instrument study, Adv. Space Res., 2019, V. 65(1). P. 74–85.
  37. Vyas B.M., and Sunda S., The solar eclipse and its associated ionospheric TEC variations over Indian stations on January 15, 2010, Adv. in Space Res., 2012, V. 49. P. 546–555.
  38. Zhang S.-R., Erickson P.J., Goncharenko L.P., Coster A.J., Rideout W., and Vierinen J. Ionospheric bow waves and perturbations induced by the21 August 2017 solar eclipse, Geophy. Res. Lett., 2017. V. 44. P. 12 067–12 073.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies