Analysis of Long-Term Measurements of Tropospheric Ozone at the SPBU Observational Site in Peterhof

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Tropospheric ozone (TO) is one of the major greenhouse gases and a toxic air pollutant. It plays a key role in various chemical and photochemical processes in the troposphere. Ozone concentrations both at surface level and in free troposphere are measured by various local and remote-sensing methods. The SPBU observational site in Peterhof (NDACC site St. Petersburg) is equipped with the Bruker IFS 125HR Fourier spectrometer used for TO measurements and the Thermo Scientific Model 49i gas analyzer for monitoring surface ozone concentrations (SOC). The temporal variability of TO in the 0–8 km layer for the period from April 2009 to October 2022 and of SOC for the period from 2013 to 2021 has been analyzed. Seasonal cycle of TO and SOC is similar to that of total ozone columns, but it is shifted in time by about 1 and 1.5 months, respectively. The maximum variation of TO from the average value for the period falls on the first half of April ~+16%; a minimum of about –(12–14)% is observed from mid-October to the end of December. In the middle of summer, there is also a slight increase in the TO variation at the level of +(7–8)%. A statistically significant decrease in the TO content by 0.34 ± 0.22% per year was also obtained. Comparison of hourly averaged data on TO with synchronized data of SOC measurements revealed an increase in the correlation coefficient (up to 0.5 or more) between the two values 3–4 hours after local noon in the warm season, accompanied by an increase in SOC. The increase in correlations is in good agreement with the increase in the height of the planet boundary layer.

About the authors

Ya. A. Virolainen

St. Petersburg University

Author for correspondence.
Email: yana.virolainen@spbu.ru
Russia, 199034, St. Petersburg, 7–9 Universitetskaya Emb

D. V. Ionov

St. Petersburg University

Email: yana.virolainen@spbu.ru
Russia, 199034, St. Petersburg, 7–9 Universitetskaya Emb

A. V. Polyakov

St. Petersburg University

Email: yana.virolainen@spbu.ru
Russia, 199034, St. Petersburg, 7–9 Universitetskaya Emb

References

  1. Антохин П.Н., Белан Б.Д. Регулирование динамики тропосферного озона через стратосферу // Оптика атмосферы и океана. 2012. Т. 25. № 10. С. 890–895.
  2. Виролайнен Я.А., Тимофеев Ю.М., Поберовский А.В., Еременко М., Дюфор Г. Определение содержания озона в различных слоях атмосферы с помощью наземной Фурье-спектрометрии // Изв. РАН. Физика атмосферы и океана. 2015. Т. 51. № 2. С. 191–200.
  3. Виролайнен Я.А., Тимофеев Ю.М., Поберовский А.В., Поляков А.В., Шаламянский А.М. Эмпирические оценки погрешностей измерения общего содержания озона различными методами и приборами // Оптика атмосферы и океана. 2017. Т. 30. № 2. С. 170–176.
  4. Еланский Н.Ф. Российские исследования атмосферного озона в 2011–2014 гг. // Изв. РАН. Физика атмосферы и океана. 2016. Т. 52. № 2. С. 150–166.
  5. Еланский Н.Ф., Голицын Г.С., Крутцен П.Й., Беликов И.Б., Бреннинкмайер К.А.М., Скороход А.И. Наблюдения состава атмосферы над Россией: Эксперименты TROICA // Изв. РАН. Физика атмосферы и океана. 2021. Т. 57. № 1. С. 79–98.
  6. Звягинцев А.М. Пространственно-временная изменчивость озона в тропосфере. Диссертация. Москва. 2013. 179 с.
  7. Звягинцев А.М., Кузнецова И.Н., Шалыгина И.Ю., Лезина Е.А., Лапченко В.А., Никифорова М.П., Демин В.И. Исследования и мониторинг приземного озона в России // Труды Гидрометцентра России. 2017. Вып. 365. С. 56–70.
  8. Кароль И.Л., Киселев А.А., Генихович Е.Л., Чичерин С.С. Короткоживущие радиационно-активные примеси в атмосфере и их роль в современных изменениях климата // Труды ГГО. 2012. № 567. С. 5–82.
  9. Макштас А.П. Существенное уменьшение содержания озона в арктической атмосфере зимой 2016 года // Российские полярные исследования. 2016. Т. 24. № 2. С. 9–10.
  10. Симакина Т.Е., Крюкова С.В. Пространственно-временное распределение концентрации приземного озона в Санкт-Петербурге // Гидрометеорология и экология. 2020. № 61. С. 407–420.
  11. Смышляев С.П., Виролайнен Я.А., Моцаков М.А., Тимофеев Ю.М., Поберовский А.В., Поляков А.В. Межгодовые и сезонные вариации содержания озона в разных высотных слоях атмосферы Санкт-Петербурга по данным наблюдений и численного моделирования // Изв. РАН. Физика атмосферы и океана. 2017. Т. 53. № 3. С. 343–359.
  12. Тимофеев Ю.М., Поляков А.В., Виролайнен Я.А., Макарова М.В., Ионов Д.В., Поберовский А.В., Имхасин Х.Х. Оценки трендов содержания климатически важных атмосферных газов вблизи Санкт-Петербурга // Изв. РАН. Физика атмосферы и океана. 2020. Т. 56. № 1. С. 97–103.
  13. Antokhin P.N., Arshinov M.Yu., Belan B.D., Davydov D.K., Zhidovkin E.V., Ivlev G.A., Kozlov A.V., Kozlov V.S., Panchenko M.V., Penner I.E., Pestunov D.A., Simonenkov D.V., Tolmachev G.N., Fofonov A.V., Shamanaev V.S., Shmargunov V.P. Optik AN30 aircraft laboratory: 20 years of environmental research // J. Atmos. and Oceanic Technology. 2012. V. 29. № 1. P. 64–75.
  14. Cuesta J., Eremenko M., Liu X., Dufour G., Cai Z., Höpfner M., von Clarmann T., Sellitto P., Foret G., Gaubert B., Beekmann M., Orphal J., Chance K., Spurr R., Flaud J.-M. Satellite observation of lowermost tropospheric ozone by multispectral synergism of IASI thermal infrared and GOME-2 ultraviolet measurements over Europe // Atmos. Chem. Phys. 2013. V. 13. № 19. P. 9675–9693.
  15. Dorokhov V., Yushkov V., Makshtas A., Ivlev G., Tereb N., Savinykh V., Shepelev D., Nakajima H., McElroy C.T., Tarasick D., Goutail F., Pommereau J.-P., Pazmino A. Brewer, SAOZ and Ozonesonde Observations in Siberia // Atmosphere-Ocean. 2013. V. 51. № 3. P. 14–18.
  16. Dufour G., Eremenko M., Griesfeller A., Barret B., LeFlochmoën E., Clerbaux C., Hadji-Lazaro J., Coheur P.-F., Hurtmans D. Validation of three different scientific ozone products retrieved from IASI spectra using ozonesondes // Atmos. Mes. Tech. 2012. V. 5. № 3. P. 611–630.
  17. Gaudel A., Cooper O.R, Ancellet G., Barret B., Boynard A., Burrows, J.P. Clerbaux C., Coheur P.-F., Cuesta J., Cuevas E., Doniki S., Dufour G., Ebojie F., Foret G., Garcia O., Granados-Muñoz M.J., Hannigan J.W., Hase F., Hassler B., Huang G., Hurtmans D., Jaffe D., Jones N., Kalabokas P., Kerridge B., Kulawik S., Latter B., Leblanc T., Le Flochmoën E., Lin W., Liu J., Liu X., Mahieu E., McClure-Begley A., Neu J.L., Osman M., Palm M., Petetin H., Petropavlovskikh I., Querel R., Rahpoe N., Rozanov A., Schultz M.G., Schwab J., Siddans R., Smale D., Steinbacher M., Tanimoto H,, Tarasick D.W., Thouret V., Thompson A.M., Trickl T., Weatherhead E., Wespes C., Worden H.M., Vigouroux C., Xu X., Zeng G., Ziemke J. Tropospheric Ozone Assessment Report: Present-day distribution and trends of tropospheric ozone relevant to climate and global atmospheric chemistry model evaluation // Elementa: Science of the Anthropocene. 2018. V. 39. № 6.
  18. Hase H., Hannigan J.W., Coffey M.T., Goldman A., Hoepfner M., Jones N.B., Rinsland C.P., Wood S.W. Intercomparison of retrieval codes used for the analysis of high-resolution, ground-based FTIR measurements // J. Quant. Spectrosc. Radiat. Transfer 2004. V. 87. № 1. P. 25–52.
  19. Hubert D., Heue K.-P., Lambert J.-C., Verhoelst T., Allaart M., Compernolle S., Cullis P.D., Dehn A., Félix C., Johnson B.J., Keppens A., Kollonige D.E., Lerot C., Loyola D., Maata M., Mitro S., Mohamad M., Piters A., Romahn F., Selkirk H.B., da Silva F.R., Stauffer R.M., Thompson A.M., Veefkind J.P., Vömel H., Witte J.C., Zehner C. TROPOMI tropospheric ozone column data: geophysical assessment and comparison to ozonesondes, GOME-2B and OMI // Atmos. Meas. Tech. 2021. V. 14. № 12. P. 7405–7433.
  20. IPCC: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change / Eds. Stocker T.F., Qin D., Plattner G.-K., Tignor M., Allen S.K., Boschung J., Nauels A., Xia Y., Bex V., Midgley P.M. NY (USA): Cambridge University Press, Cambridge, United Kingdom and New York, 2013. 1535 p.
  21. NDACC database. https://www-air.larc.nasa.gov/missions/ ndacc/data.html.
  22. Nerobelov G., Timofeyev Y., Virolainen Y., Polyakov A., Solomatnikova A., Poberovskii A., Kirner O., Al-Subari O., Smyshlyaev S., Rozanov E. Measurements and Modelling of Total Ozone Columns near St. Petersburg, Russia // Remote Sens. 2022. V. 14. P. 3944.
  23. Paris J.-D., Ciais Ph., Nédélec Ph., Stohl A., Belan B.D., Arshinov M.Yu., Carouge C., Golitsyn G., Granberg I.G. New insights on the chemical composition of the Siberian air shed from the YAK-AEROSIB aircraft campaigns // Bull. Amer. Meteorol. Soc. 2010. V.91. № 5. P. 1–17.
  24. Polyakov A., Poberovsky A., Makarova M., Virolainen Y., Timofeyev Y., Nikulina A. Measurements of CFC-11, CFC-12, and HCFC-22 total columns in the atmosphere at the St. Petersburg site in 2009–2019 // Atmos. Meas. Tech. 2021. V. 14. № 8. P. 5349–5368.
  25. Ramaswamy V., Boucher O., Haigh J., Hauglustaine D., Haywood J., Myhre G., Nakajima T., Shi G.Y., Solomon S. Radiative forcing of climate change. In: Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change / Eds. Houghton J.T., Ding Y., Griggs D.J., Noguer M., van der Linden P.J., Dai X., Maskell K., Johnson C.A. NY (USA): Cambridge University Press, Cambridge, United Kingdom and New York, 2001. 881 p.
  26. Tarasick D., Galbally I.E., Cooper O.R., Schultz M.G., Ancellet G., Leblanc T., Wallington T.J., Ziemke J., Liu X., Steinbacher M., Staehelin J., Vigouroux C., Hannigan J.W., García O., Foret G.,Zanis P, Weatherhead E., Petropavlovskikh I., Worden H., Osman M., Liu J., Chang K.-L., Gaudel A., Lin M., Granados-Muñoz M., Thompson A.M., Oltmans S.J., Cuesta J., Dufour G., Thouret V., Hassler B., Trickl T., Neu J.L. Tropospheric Ozone Assessment Report: Tropospheric ozone from 1877 to 2016, observed levels, trends and uncertainties // Elementa: Science of the Anthropocene. 2019. V. 39. № 7.
  27. Vigouroux C., De Mazière M., Demoulin P., Servais C., Hase F., Blumenstock T., Kramer I., Schneider M., Mellqvist J., Strandberg A., Velazco V., Notholt J., Sussmann R., Stremme W., Rockmann A., Gardiner T., Coleman M., Woods P. Evaluation of tropospheric and stratospheric ozone trends over Western Europe from ground-based FTIR network observations // Atmos. Chem. Phys. 2008. V. 8. № 23. P. 6865–6886.
  28. Virolainen Y., Polyakov A., Timofeyev Y., Poberovsky A. FTIR measurements of stratospheric gases at the St. Petersburg site // Problems of Geocomsos-2022. Springer Proceedings in Earth and Environmental Sciences / Eds. Kosterov A., Lyskova E., Mironova I., Baranov S., Apatenkov S. 2023. Springer, Cham. (submitted).
  29. Whole Atmosphere Community Climate Model (WACCM) Model Output ds313.6. https://doi.org/10.5065/G643-Z138 https://rda.ucar.edu/datasets/ds313.6/#!description.
  30. World Meteorological Organization (WMO). Executive Summary. Scientific Assessment of Ozone Depletion: 2022. GAW Report No. 278. WMO: Geneva, 2022. 56 p.
  31. Wu S., Mickley L.J., Jacob D.J., Logan J.A., Yantosca R.M., Rind D. Why are there large differences between models in global budgets of tropospheric ozone? // J. Geophys. Res. 2007. V. 112. № D05 P. 302.
  32. Young P.J., Archibald A.T., Bowman K.W., Lamarque J.-F., Naik V., Stevenson D.S., Tilmes S., Voulgarakis A., Wild O., Bergmann D., Cameron-Smith P., Cionni I., Collins W.J., Dalsøren S.B., Doherty R M., Eyring V., Faluvegi G., Horowitz L W., Josse B., Lee Y.H., MacKenzie I.A., Nagashima T., Plummer D.A., Righi M., Rumbold S.T., Skeie R.B., Shindell D.T., Strode S.A., Sudo K., Szopa S., Zeng G. Pre-industrial to end 21st century projections of tropospheric ozone from the Atmospheric Chemistry and Climate Model Intercomparison Project (A-CCMIP) // Atmos. Chem. Phys. 2013. V. 13. № 4. P. 2063–2090.
  33. Ziemke J.R., Chandra S., Duncan B.N., Froidevaux L., Bhartia P.K., Levelt P.F. Waters J.W. Tropospheric ozone determined from Aura OMI and MLS: Evaluation of measurements and comparison with the Global Modeling Initiative’s Chemical Transport Model // J. Geophys. Res. 2006. V. 111. № D19. P. 303.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (446KB)
3.

Download (156KB)
4.

Download (138KB)
5.

Download (431KB)


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies