Symmetric Stability of Vertical Baroclinic Vortices with a Warm Core

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

An attempt has been made to relate the morphological characteristics of intense convective vortices, such as waterspouts and dust devils, to their hydrodynamic stability. The symmetric stability of cyclostrophically balanced vertical baroclinic vortices, whose radius of maximum wind depends on height, is considered. It shows the stability of narrow vortices, nearly cylindrical at the bottom, with a radius that then increases with height at an increasing rate and becomes infinite at a finite level above the Earth’s surface. On the contrary, wider conical vortices satisfy the necessary condition of instability, and it is hypothesized that this partly explains the more diffuse, disorganized nature of this kind of dust devils. The possibility of taking into account the general rotation in the problem is considered.

About the authors

M. V. Kurgansky

Obukhov Institute of Atmospheric Physics, Russian Academy of Science

Author for correspondence.
Email: kurgansk@ifaran.ru
Russia, 119017, Moscow, Pyzhevsky per., 3

References

  1. Арнольд В.И. Об условиях нелинейной устойчивости плоских стационарных криволинейных течений идеальной жидкости // ДАН СССР. 1965. Т. 162. № 5. С. 975–978.
  2. Вараксин А.Ю. Воздушные торнадоподобные вихри: математическое моделирование // ТВТ. 2017. Т. 55. № 2. С. 291–316.
  3. Ингель Л.Х. О динамике инерционных частиц в интенсивных атмосферных вихрях // Изв. РАН. Физика атмосферы и океана. 2021. Т. 57. № 6. С. 632–640.
  4. Калашник М.В., Свиркунов П.Н. О симметричной устойчивости состояний циклострофического и геострофического баланса в стратифицированной среде // ДАН. 1996 Т. 348. № 6. С. 811–813.
  5. Калашник М.В., Курганский М.В., Чхетиани О.Г. Бароклинная неустойчивость в геофизической гидродинамике // УФН. 2022. Т. 192. № 10. С. 1110–1144.
  6. Онищенко О.Г., Похотелов О.А., Астафьева Н.М., Хортон В., Федун В.Н. Структура и динамика концентрированных мезомасштабных вихрей в атмосферах планет // УФН. 2020. Т. 190. № 7. С. 732–748.
  7. Balme M., Greeley R. Dust devils on Earth and Mars // Rev. Geophys. 2006. V. 44. P. RG3003.
  8. Bluestein H.B., Weiss C.C., Pazmany A.L. Doppler radar observations of dust devils in Texas // Mon. Wea. Rev. 2004. V. 132. № 1. P. 209–224.
  9. Fenton L.K., Metzger S.M., Michaels T.I., Scheidt S.P., Dorn T.C., Neakrase L.D.V., Cole B., Sprau O. Meteorological and geological controls on dust devil activity: Initial results from a field study at Smith Creek Valley, Nevada, USA // Aeolian Research. 2022. V. 59. P. 100 831.
  10. Fiedler B.H. Conditions for laminar flow in geophysical vortices // J. Atmos. Sci. 1989. V. 46. P. 252–259.
  11. Hess G.D., Spillane K.T. Characteristics of dust devils in Australia // J. Appl. Meteorol. 1990. V. 29. P. 498–507.
  12. Ito J., Niino H. Particle image velocimetry of a dust devil observed in a desert // SOLA. 2014. V. 10. P. 108–111.
  13. Kahanpää H, Newman C., Moores J., Zorzano M.-P., Martín-Torres J., Navarro S., Lepinette A., Cantor B., Lemmon M. T., Valentín–Serrano P., Ullán A., Schmidt W. Convective vortices and dust devils at the MSL landing site: annual variability // J. Geophys. Res. Planets 2016. V. 121(8). P. 1514–1549.
  14. Kanak K.M., Lilly D.K., Snow J.T. The formation of vertical vortices in the convective boundary layer // Q. J. R. Meteorol. Soc. 2000. V. 126. P. 2789–2810.
  15. Kurgansky M.V. A simple model of dry convective helical vortices (with applications to the atmospheric dust devil) // Dyn. Atmos. Oceans. 2005. V. 40. P. 151–162.
  16. Kurgansky M.V. Steady-state properties and statistical distribution of atmospheric dust devils // Geophys. Res. Lett. 2006. V. 33. P. L19S06(1–4).
  17. Kurgansky M.V. Simple models of helical baroclinic vortices // Procedia IUTAM. 2013. V. 7. P. 193–202.
  18. Kurgansky M.V., Lorenz R.D., Renno N.O., Takemi T., Gu Z., Wei W. Dust devil steady-state structure from a fluid dynamics perspective // Space Sci. Rev. 2016. V. 203(1–4). P. 209–244.
  19. Kurgansky M.V., Montecinos A., Villagran V., Metzger S.M. Micrometeorological conditions for dust-devil occurrence in the Atacama Desert // Boundary-Layer Meteorol. 2011. V. 138. P. 285–298.
  20. Leverson V.H., Sinclair P.C., Golden J.H. Waterspout wind, temperature and pressure structure deduced from aircraft measurements // Mon. Wea. Rev. 1977. V. 105(6). P. 725–733.
  21. Ooyama K. On the stability of the baroclinic circular vortex: A sufficient condition for instability // J. Atmos. Sci. 1966. V. 23. № 1. P. 43–53.
  22. Rayleigh L. On the dynamics of revolving fluids // Proc. R. Soc. 1917. V. A 93. P. 148–154.
  23. Rennó N.O., Burkett M.L., Larkin M.P. A simple thermodynamical theory for dust devils // J. Atmos. Sci. 1998. V. 55. P. 3244–3252.
  24. Schwiesow R.L. Horizontal velocity structure in waterspouts // J. Appl. Meteor. 1981. V. 20. P. 349–360.
  25. Stull R.B. Meteorology for Scientists and Engineers. 3rd ed. Univ. of British Columbia, 2011. 938 pp.
  26. Vatistas G.H., Kozel V., Mih W.C. A simpler model for concentrated vortices // Exp. Fluids. 1991. V. 11. P. 73–76.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (2MB)
3.

Download (160KB)
4.

Download (1MB)
5.

Download (156KB)
6.

Download (84KB)
7.

Download (67KB)
8.

Download (70KB)


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies