DYNAMIC MODELS OF TRANSPORT RESOURCES MANAGEMENT

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In modern conditions, methods of organizing transportation that allow the most rational use of available transport resources are becoming especially relevant. Taking this into account, this paper proposes models for managing urban passenger transport taking into account restrictions on existing transport capacities and passenger flow intensity. One of these models is to distribute a limited fleet of buses over a finite number of routes, while minimizing the total time lost waiting for transport service or minimizing the number of passengers whose transport service time exceeds the critical one. The article presents mathematical formulations of these problems and methods for solving them.

About the authors

O. A Kosorukov

Moscow State University named after M. V. Lomonosov; Russian Academy of National Economy and Public Administration under the President of the Russian Federation; Federal State Budgetary Educational Institution of Higher Education “Plekhanov Russian University of Economics”

Email: kosorukovoa@mail.ru
Moscow, Russia; Moscow, Russia

A. V Mishchenko

FGOBU VO “Financial University under the Government of the Russian Federation”

Email: alnex4957@rambler.ru
Moscow, Russia

O. A Sviridova

Federal State Budgetary Educational Institution of Higher Education “Plekhanov Russian University of Economics”

Email: olshan@list.ru
Moscow, Russia

V. I Tsurkov

Federal Research Center “Computer Science and Control” Russian Academy of Sciences

Email: v.isurkov@mail.ru
Moscow, Russia

References

  1. Jayanthi G., Jothilakshmi P. Traffic Time Series Forecasting on Highways – a Contemporary Survey of Models, Methods and Techniques // Intern. J. of Logistics Systems and Management. 2021. V. 39(1). P. 77–110.
  2. El Fouh M.A., Sefani N., Fouxka M. Collaborative Transportation and Urban Routing Problems: State of Classification and Literature // Intern. J. of Logistics Systems and Management. 2020. V. 35. № 3. P. 289–328.
  3. Ansorena Inigo L., Valdecanos V.N. The Port of Valencia Maritime Network: an Analysis of Centralities and Tree-optimisation // Intern. J. of Logistics Systems and Management. 2021. V. 39(1). P. 127–139.
  4. Rahmannyoy F., Razmi J., Yu A.J. An Interactive Multi-objective Fuzzy Linear Programming Model for Hub Location Problems to Minimise Cost and Delay Time in a Distribution Network // Intern. J. of Logistics Systems and Management. 2020. V. 37. № 1. P. 79–105.
  5. Kumapopadeelet S., Klinzisuk R. Determination of Green Vehicle Routing Problem via Differential Evolution // Intern. J. of Logistics Systems and Management. 2019. V.34. № 3. P. 395–410.
  6. Wen X., Ma H.-L., Chung S.-H., Khan W.A. Robust Airline Crew Scheduling with Flight Flying Time Variability // Transp. Res. Pt E: Logistics and Transportation Review. 2020. V. 144.
  7. Suwamong T., Sopadang A. The Impact of Delay Affecting Airport Efficiency: Sustainability Perspective // Intern. J. of Logistics Systems and Management. 2020. V. 37(4). P. 445–464.
  8. Yang H., Tang Y. Managing Rail Transit Peak-hour Congestion with a Fare-reward Scheme // Transp. Res. Pt B. 218. V. 110. P. 122–136.
  9. Kamel I., Shalaby A., Abdullah B. A Modelling Platform for Optimizing Time-dependent Transit Fares in Large-scale Multimodal Networks // Transport Policy. 2020. V. 92. P. 38–54.
  10. Peer S., Knockaerta J., Verhoef V.T. Train Commuters’ Scheduling Preferences: Evidence from a Large-scale Peak Avoidance Experiment // Transp. Res. Pt B: Methodological. 2016. V. 83. P. 314–333.
  11. Hadas Y., Shmaiderman M. Public-transit Frequency Setting Using Minimum-cost Approach with Stochastic Demand and Travel Time // Transp. Res. Pt B: Methodological. 2012. V. 46. Iss. 8. P. 1068–1084.
  12. Verbas I.O., Mahmassani H.S. Optimal Allocation of Service Frequencies over Transit Network Routes and Time Periods: Formulation, Solution, and Implementation Using Bus Route Patterns // Transp. Res. 2013. Rec. 2334 (1). P. 50–59.
  13. Verbas I.O., Mahmassani H.S. Integrated Frequency Allocation and User Assignment in Multi-modal Transit Networks: Methodology and Application to Large-scale Urban Systems // Transp. Res. 2015. Rec. 2498. P. 37–45.
  14. An Q., Fu X., Huang D., Cheng Q., Liu Z. Analysis of Adding-runs Strategy for Peak-hour Regular Bus Services // Transp. Res. Pt E: Logistics and Transp. Rev., Elsevier. 2020. V. 143(C).
  15. Kosovikov O. Optimization Problems of Transportation in Communication Networks with Variable Capacities // J. of Computer and Systems Sciences International. 2016. V. 55. № 6. P. 1010–1015.
  16. Narayanaswami S. Optimal Allocation of Rolling Stock in Scheduled Transportation Services // Intern. J. of Logistics Systems and Management. 2019. V.34. № 3. P.327351.
  17. Xie J., Wong S.C., Zhan S., Lo S.M., & Chen A. Train Schedule Optimization Based on Schedule-based Stochastic Passenger Assignment // Transp. Res. Pt E: Logistics and Transportation Review. 2020. V. 136.
  18. Мищенко А.В. Устойчивость решений в задаче перераспределения транспортных средств в случае экстренного закрытия движения на участке метрополитена // Изв. АН СССР. Техн. кибернетика. 1990. № 3.
  19. Мищенко А.В., Капюхана О.А. Компенсационное перераспределение транспортных средств при сбоях в работе городского трамвая // Логистика сегодня. 2015. № 1 (67). С. 20–36.
  20. Мищенко А.В., Капюхана О.А. Динамические модели управления транспортными ресурсами на примере организации работы автобусного парка // Аудит и финансовый анализ. 2016. № 2. С. 156–167.
  21. Mishchenko A.V., Kosovakov O.A., Sviridova O.A. Dynamic Models of Transport Resources Management // Intern. J. of Logistics Systems and Management. 2023. V. 46. № 4. P. 518–546.
  22. Мищенко А.В. Задача распределения транспортных средств по автобусным маршрутам при неточно заданной матрице корреспонденций пассажиропотока // Изв. АН СССР. Техн. кибернетика. 1992. № 2.
  23. Miromov A.A., Tsurkov V.I. Transport-type Problems with the Minimax Criterion // AnT. 1995. № 12. P. 109–118.
  24. Миронов А.А., Цурков В.И. Наследственно минимальные матрицы в моделях транспортного типа // Изв. РАН. ТиСУ. 1998. № 6. С. 104–121.
  25. Miromov A.A., Levkina T.A., Tsurkov V.I. Minimax Estimations of Expectates of Are Weights in Integer Networks with Fixed Node Degrees // Applied and Computational Mathematics. 2009. Т. 8. № 2. P. 216–226.
  26. Tizik A.P., Tsurkov V.I. Iterative Functional Modification Method for Solving a Transportation Problem // Automation and Remote Control. 2012. V. 73. № 1. P. 134–143.
  27. Miromov A.A., Tsurkov V.I. Hereditarily Minimax Matrices in Models of Transportation Type // J. Computer and Systems Sciences International. 1998. V. 37. № 6. P. 927–944.
  28. Miromov A.A., Tsurkov V.I. Minimax in Transportation Models with Integral Constraints. I // J. Computer and Systems Sciences International. 2003. V. 42. № 4. P. 562–574.
  29. Расписание маршрутов наземного городского транспорта (информация с сайта ГУП “Мосгортранс”) [электронный ресурс]. Режим доступа: http://www.mosgortrans.ru/routes/routes/.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).