SELF-CHECKING DISCRETE DEVICES SYNTHESIS BASED ON BOOLEAN CORRECTION OF SIGNALS USING THE CONSTANT-WEIGHT “1-OUT-OF-3” CODE

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

In the proposed paper, the author solve the problem of synthesis self-checking discrete devices with concurrent error-detection circuit based on the Boolean signal correction using constant-weight “1-out-of-3” code. In this case, the diagnostic object outputs are divided into groups of three each and separate concurrent error-detection subcircuits are organized according to the “1-out-of-3” code. Then, the control signals are compressed based on the pyramidal connection of the two-rail signal compression modules. The peculiarity of the approach used is the transformation of signals from all three outputs from the controlled group in the concurrent error-detection circuit, against two as was assumed in earlier studies. This approach allows to obtain more than six thousand variants of the concurrent error-detection circuit organization, in contrast to the previously known two. The paper presents a technique for obtaining a functional relationship between the output values of the correction function calculation unit and the diagnostic object. Expressions for calculating the signal correction functions are compiled considering the need to generate tests for all conversion gates and the “1-out-of-3” code checker. Such dependence significantly simplifies the procedure of self-checking device synthesis. In the paper, as an example, such a dependence between the values at the block outputs for calculating the correction functions and the diagnostic object is established, which makes it possible to calculate the correction function of two outputs in the controlled group at once, and this simplifies the block for calculating the correction function values. An example of the concurrent error-detection circuit synthesis according to the method proposed in the paper is given. This paper presents some experimental evidence of the proposed method effectiveness for synthesizing self-checking discrete devices. The results obtained in this study can be effectively used in practice in the development and design of self-checking discrete devices on various elements.

Sobre autores

D. Efanov

Peter the Great Saint Petersburg Polytechnic University; Russian University of Transport

Autor responsável pela correspondência
Email: TrES-4b@yandex.ru
St. Petersburg, Russia; Moscow, Russia

Bibliografia

  1. Bennetts R.G. Design of Testable Logic Circuits. Boston: Addison-Wesley Publishers Limited, 1984. 164 p.
  2. Согомонян Е.С., Слабаков Е.В. Самопроверяемые устройства и отказоустойчивые системы. М.: Радио и связь, 1989. 208 с.
  3. Ланцов В.Н., Мосин С.Г. Современные подходы к проектированию и тестированию интегральных микросхем. Владимир: Изд-во Владимирск. гос. ун-та, 2010. 285 с.
  4. Gharibi W., Hahanov V., Chumachenko S., Litvinova E., Hahanov I., Hahanova I. Vector-Logic Computing for Faults-As-Address Deductive Simulation // IAES Intern. J. Robotics and Automation (IJRA). 2023. V. 12. № 3. P. 274–288. https://doi.org/10.11591/ijra.v12i3.pp274–288.
  5. Hahanov V., Litvinova E., Davitadze Z., Chumachenko S., Devadze Z., Abdullaev V.H. Truth Table Based Intelligent Computing // 31st Intern. Conf. Mixed Design of Integrated Circuits and System (MIXDES). Gdansk, Poland, 2024. https://doi.org/10.23919/MIXDES62605.2024.10614035.
  6. Drozd A., Kharchenko V., Antoshchuk S., Sulima J., Drozd M. Checkability of the Digital Components in Safety-Critical Systems: Problems and Solutions // Proc. 9th IEEE East-West Design & Test Sympos. (EWDTS’2011). Sevastopol, Ukraine, 2011. P. 411–416. https://doi.org/10.1109/EWDTS.2011.6116606.
  7. Drozd O., Perebeinos I., Martynyuk O., Zashcholkin K., Ivanova O., Drozd M. Hidden Fault Analysis of FPGA Projects for Critical Applications // Proc. IEEE Intern. Conf. on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET). Lviv-Slavsko, Ukraine, 2020. P. 142. https://doi.org/10.1109/TCSET49122.2020.235591.
  8. Закревский А.Д., Поттосин Ю.В., Черемисинова Л.Д. Логические основы проектирования дискретных устройств. М.: Физматлит, 2007. 592 с.
  9. Пархоменко П.П., Согомонян Е.С. Основы технической диагностики (оптимизация алгоритмов диагностирования, аппаратурные средства). М.: Энергоатомиздат, 1981. 320 с.
  10. Goessel M., Graf S. Error Detection Circuits. London: McGraw-Hill, 1994. 261 p.
  11. Аксёнова Г.П. Метод синтеза схем встроенного контроля для автоматов с памятью // АиТ. 1973. №2. С. 109–116.
  12. Göessel M., Ocheretny V., Sogomonyan E., Marienfeld D. New Methods of Concurrent Checking: Ed. 1. Dordrecht: Springer Science+Business Media B.V., 2008. 184 p.
  13. Сапожников В.В., Сапожников Вл.В., Ефанов Д.В. Коды Хэмминга в системах функционального контроля логических устройств. СПб.: Наука, 2018, 151 с.
  14. Сапожников В.В., Сапожников Вл.В., Ефанов Д.В. Коды с суммированием для систем технического диагностирования. Т. 1. Классические коды Бергера и их модификации. М.: Наука, 2020. 383 с.
  15. Сапожников В.В., Сапожников Вл.В., Ефанов Д.В. Коды с суммированием для систем технического диагностирования. Т. 2. Взвешенные коды с суммированием. М.: Наука, 2021. 455 с.
  16. Nicolaidis M., Zorian Y. On-Line Testing for VLSI – А Compendium of Approaches // J. Electronic Testing: Theory and Application (JETTA). 1998. V. 12. Iss. 1–2. P. 7–20. https://doi.org/10.1023/A:1008244815697.
  17. Mitra S., McCluskey E.J. Which Concurrent Error Detection Scheme to Choose?” // Proc. Intern. Test Conf., USA, Atlantic City, NJ, 2000. P. 985–994. https://doi.org/10.1109/TEST.2000.894311.
  18. Sahana A.R., Chiraag V., Suresh G., Thejaswini P., Nandi S. Application of Error Detection and Correction Techniques to Self-Checking VLSI Systems: An Overview // Proc. IEEE Guwahati Subsection Conf. (GCON). Guwahati, 2023. https://doi.org/10.1109/GCON58516.2023.10183449.
  19. Goessel M., Saposhnikov Vl., Saposhnikov V., Dmitriev A. A New Method for Concurrent Checking by Use of a 1-out-of-4 Code // Proc. 6th IEEE Int. On-line Testing Workshop. Palma de Mallorca, Spain, 2000. P. 147–152.
  20. Сапожников В.В., Сапожников Вл.В., Дмитриев А.В., Морозов А.В., Гессель М. Организация функционального контроля комбинационных схем методом логического дополнения // Электронное моделирование. 2002. Т. 24. № 6. С. 52–66.
  21. Гессель М., Морозов А.В., Сапожников В.В., Сапожников Вл.В. Контроль комбинационных схем методом логического дополнения // АиТ. 2005. №8. С. 161–172.
  22. Ефанов Д.В., Елина Е.И. Синтез самопроверяемых цифровых устройств на основе логической коррекции сигналов с применением взвешенных кодов Боуза – Лина // Проблемы управления. 2024. №4. С. 26–43. http://doi.org/10.25728/pu.2024.4.3.
  23. Аксёнова Г.П. Необходимые и достаточные условия построения полностью проверяемых схем свертки по модулю 2 // АиТ. 1979. №9. С. 126–135.
  24. Сапожников В.В., Сапожников Вл.В. Самопроверяемые дискретные устройства. СПб.: Энергоатомиздат, 1992. 224 с.
  25. Сапожников В.В., Сапожников Вл.В. Самопроверяемые тестеры для равновесных кодов // АиТ. 1992. № 3. С. 3–35.
  26. Гессель М., Морозов А.В., Сапожников В.В., Сапожников Вл.В. Логическое дополнение – новый метод контроля комбинационных схем // АиТ. 2003. №1. С. 167–176.
  27. Efanov D., Sapozhnikov V., Sapozhnikov Vl. Methods of Organization of Totally Self-Checking Concurrent Error Detection System on the Basis of Constant-Weight “1-out-of-3”-Code // Proc. 14th IEEE East-West Design & Test Sympos. (EWDTS’2016). Yerevan, Armenia, 2016. P. 117–125. https://doi.org/10.1109/EWDTS.2016.7807622.
  28. Сапожников В.В., Сапожников Вл.В., Ефанов Д.В. Построение полностью самопроверяемых структур систем функционального контроля с использованием равновесного кода “1 из 3” // Электронное моделирование. 2016. Т. 38. №6. С. 25–43.
  29. Sapozhnikov V., Sapozhnikov Vl., Efanov D., Pivovarov D. Self-Checking Concurrent Error Detection System Design Based on Boolean Complement Method to “1 out of 3” Code with Hardware Cost Optimization // Proc. 16th IEEE East-West Design & Test Sympos. (EWDTS’2018). Kazan, Russia, 2018. P. 164–169. https://doi.org/10.1109/EWDTS.2018.8524695.
  30. Das D.K., Roy S.S., Dmitiriev A., Morozov A., Gössel M. Constraint Don’t Cares for Optimizing Designs for Concurrent Checking by 1-out-of-3 Codes // Proc. 10th Intern. Workshops on Boolean Problems, Freiberg, Germany, 2012. P. 33–40.
  31. Collection of Digital Design Benchmarks [электронный ресурс]. Режим доступа: https://ddd.fit.cvut.cz/www/prj/Benchmarks/ (дата обращения – 01.07.2025 г.).
  32. Sentovich E.M., Singh K.J., Moon C., Savoj H., Brayton R.K., Sangiovanni-Vincentelli A. Sequential Circuit Design Using Synthesis and Optimization // Proc. IEEE Intern. Conf. on Computer Design: VLSI in Computers & Processors. Cambridge, MA, USA, 1992. P. 328–333. https://doi.org/10.1109/ICCD.1992.276282.
  33. Efanov D.V., Sapozhnikov V.V., Sapozhnikov Vl.V. Organization of a Fully Self-Checking Structure of a Combinational Device Based on Searching for Groups of Symmetrically Independent Outputs // Automatic Control and Computer Sciences. 2020. V. 54. Iss. 4. P. 279–290. https://doi.org/10.3103/S0146411620040045.
  34. Ефанов Д.В. Синтез самопроверяемых вычислительных устройств на основе полной системы особых групп выходов объекта диагностирования // Изв. вузов. Приборостроение. 2023. Т. 66. №5. С. 355–372. https://doi.org/10.17586/0021-3454-2023-66-5-355-372.
  35. Sogomonyan E.S., Gössel M. Design of Self-Testing and On-Line Fault Detection Combinational Circuits with Weakly Independent Outputs. J. Electronic Testing: Theory and Applications. 1993. V. 4. Iss. 4. P. 267–281. https://doi.org/10.1007/BF00971975.
  36. Matrosova A.Yu., Ostanin S.A. Self-Checking Synchronous Sequential Circuit Design for Unidirectional Error // Proc. IEEE European Test Workshop (ETW’98). Sitges, Barcelona, Spain, 1998.
  37. Saposhnikov V.V., Morosov A., Saposhnikov Vl.V., Göessel M. A New Design Method for Self-Checking Unidirectional Combinational Circuits // J. Electronic Testing: Theory and Applications. 1998. V. 12. Iss. 1–2. P. 41–53. https://doi.org/10.1023/A:1008257118423.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».