Improvement of Intersatellite Measurements Scheduling to Refine the Accuracy of the Ephemerides of Modern and Prospective GLONASS Orbital Segments

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The information technology developed by the authors to ensure the possibility of operation without downloading information by the ground control complex while improving the accuracy of the ephemerides of the existing global navigation satellite systems (GLONASS) midaltitude segment and its promising additions is described. Achieving the stated goals within the framework of the technology under discussion involves the formation of precise ephemerides by solving the following interrelated tasks: improving the accuracy of determining and predicting the ephemerides of navigation satellites in the inertial coordinate system; improvement of methods and algorithms for forecasting and updating the evolution of the Earth’s rotation parameters onboard satellites; and precise synchronization of onboard clocks. The primary attention is paid to the first of the listed tasks, i.e., prediction and refinement of the ephemerides of navigation satellites in the inertial coordinate system, including in the mode of operation of satellite constellations without updating the ephemerides-temporal information. As a base for its solution, it is proposed to use advanced onboard hardware for intersatellite measurements. The basic limitations related to the implementation of intersatellite measurements and their subsequent processing for both midaltitude and advanced space segments of the GLONASS are discussed. The results of the design-ballistic analysis and processing of real and simulated measurements, as well as the preliminary characteristics of the accuracy of the ephemerides estimates obtained in this case onboard, are presented.

About the authors

M. N. Krasilshchikov

Moscow Aviation Institute (National Research University), 125080, Moscow, Russia

Email: kruzhkovd@mail.ru
Россия, Москва

D. M. Kruzhkov

Moscow Aviation Institute (National Research University), 125080, Moscow, Russia

Email: kruzhkovd@mail.ru
Россия, Москва

T. A. Marareskul

JSC Reshetnev Information Satellite Systems, 662972, Zheleznogorsk, Krasnoyarsk Krai, Russia

Email: kruzhkovd@mail.ru
Россия, Железногорск

E. A. Martynov

Moscow Aviation Institute (National Research University), 125080, Moscow, Russia

Email: kruzhkovd@mail.ru
Россия, Москва

D. S. Muratov

JSC Reshetnev Information Satellite Systems, 662972, Zheleznogorsk, Krasnoyarsk Krai, Russia

Author for correspondence.
Email: kruzhkovd@mail.ru
Россия, Железногорск

References

  1. Kruzhkov D.M., Pasynkov V.V. High-Accuracy Navigation Based on Informational GNSS Technologies. P. II. GLONASS – Information Technologies and Navigation Tasks Solving Algorithms. M.: Moscow Aviation Institute, 2021.
  2. Kruzhkov D.M., Pasynkov V.V. National Global Navigation Satellite System GLONASS: Features of Creation, Development and Use. M.: Moscow Aviation Institute, 2022.
  3. Bartenev V.A., Grechkoseev A.K., Kozorez D.A., Krasilchshikov M.N., Pasynkov V.V., Sebryakov G.G., Sypalo K.I. Modern and Future Informational GNSS Technologies in High-Precision Navigation Tasks. M.: Fizmatlit. 2014.
  4. GLONASS Information Analytics Center. https://glonass-iac.ru/, 10.12.2022.
  5. Krasil’shchikov M.N., Kruzhkov D.M. On the Issue of Autonomous Refining of the Earth Orientation Parameters Onboard Spacecraft. Analysis of the Possibilities of Developed Information Technology // Cosmic Research. 2021. V. 59. № 5. P. 357–365.
  6. Grechkoseev A.K., Krasil’shchikov M.N., Kruzhkov D.M., Mararescul T.A. Refining the Earth Orientation Parameters Onboard Spacecraft Concept and Information Technologies // J. Computer and Systems Sciences International. 2020. V. 59. № 4. P. 598–608.
  7. International Earth Rotation Service. https://www.iers.org/IERS/EN/Home/home_node.html, 10.12.2022.
  8. Yuguo Y., Wenfeng N., Tianhe X., Zhenlong F., Huijie X., Zhangzhen S. Earth Orientation Parameters Prediction Based on the Hybrid SSA + LS + SVM Model. Measurement Science and Technology. 2022. V. 33. № 12.
  9. Krasil’shchikov M.N., Kruzhkov D.M., Pasynkov V.V. Current Problems of Improving the Coordinate-Time Support of GLONASS and Promising Methods for Their Solution. 1. Alignment of Coordinate Systems Used by Various Information Technologies to Refine the Geocenter’s Position // J. Computer and Systems Sciences International. 2019. V. 58. № 4. P. 648–657.
  10. Montenbruck O., Steigenberger P., Aicher M. A Long-Term Broadcast Ephemeris Model for Extended Operation of GNSS Satellites // J. of the Institute of Navigation. 2020. V. 68. № 5.
  11. Chen W., Jing G., Qile Z., Maorong G. Improving the Orbits of the BDS-2 IGSO and MEO Satellites with Compensating Thermal Radiation Pressure Parameters // Remote Sensing. 2022. V. 14. № 3. P. 641.
  12. Krasilchshikov M.N., Sebryakov G.G. Modern Information Technologies in the Navigation and Guidance Tasks of Unmanned Maneuverable Aircraft. M.: Fizmatlit. 2009.
  13. Grechkoseev A.K. Study of Observability of Motion of an Orbital Group of Navigation Space System Using Intersatellite Range Measurements. I // J. Computer and Systems Sciences International. 2011. V. 50. № 2. P. 293–308.
  14. Grechkoseev A.K. Study Of Observability Of Motion of an Orbital Group of Navigation Space System Using Intersatellite Range Measurements. II // J. Computer and Systems Sciences International. 2011. V. 50. № 3. P. 472–482.
  15. Chen W., Qile Z., Jing G., Jingan L., Gucang C. The Contribution of Intersatellite Links to BDS-3 Orbit Determination: Model Refinement and Comparisons // J. of the Institute of Navigation. 2019. V. 66. № 1. P. 71–82.
  16. Zhao X., Jinhuo L., Shanshi Z., Xiaojie L., Qiuli C., Gong Z., Haihong W. Research on the Enhancement of BDS-3 Constellation Orbit Determination and ERP by Inter-satellite Link. China Satellite Navigation Conf. (CSNC 2022) Proceedings. China, Pekin, 2022.
  17. Akimov E.V., Kruzhkov D.M., Yakimenko V.A. High-Precision Simulation of Onboard Signal Receivers in Global Navigation Systems // Russian Engineering Research. 2020. V. 40. № 2. P. 152–155.
  18. Akimov E.V., Kruzhkov D.M., Yakimenko V.A. Prototype Information System for High-Precision Navigation in Global Satellite Systems // Russian Engineering Research. 2020. V. 40. № 2. P. 156–159.
  19. SVOEVP. http://www.glonass-svoevp.ru/index.php?lang=ru, 10.12.2022.
  20. Vallado D.A. Fundamentals of Astrodynamics and Applications. Portland: Microcosm Press, 2022. P. 1122.
  21. Kruzhkov D.M., Pasynkov V.V. High-Accuracy Navigation Based on Informational GNSS Technologies. P. I. Mathematical Basis. M.: Moscow Aviation Institute, 2021.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (273KB)
3.

Download (334KB)
4.

Download (314KB)
5.

Download (36KB)
6.

Download (65KB)
7.

Download (53KB)
8.

Download (60KB)
9.

Download (52KB)
10.

Download (46KB)
11.

Download (47KB)
12.

Download (35KB)


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies