Autooscillations of a Multlink Aerodynamic Pendulum

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A multilink pendulum located in a flow is considered. On the last link of the pendulum, a wing is installed, on which the interaction with the flow is concentrated. The dynamics of this system are studied as a potential working element of an oscillatory wind power plant. For different flow velocities, periodic modes are numerically investigated that occur under different numbers of links and different values of the external load. It is shown that the maximum power that can be obtained with a two-link pendulum is greater in a wide range of flow velocities than with pendulums with more than two links. At the same time, pendulums with a large number of links make it possible to obtain considerable power in a wider range of load values than a two-link one.

About the authors

A. P. Golub

Institute of Mechanics, Lomonosov Moscow State University, 119192, Moscow, Russia

Email: seliutski@imec.msu.ru
Россия, Москва

L. A. Klimina

Institute of Mechanics, Lomonosov Moscow State University, 119192, Moscow, Russia

Email: seliutski@imec.msu.ru
Россия, Москва

B. Ya. Lokshin

Institute of Mechanics, Lomonosov Moscow State University, 119192, Moscow, Russia

Email: seliutski@imec.msu.ru
Россия, Москва

Yu. D. Selyutskiy

Institute of Mechanics, Lomonosov Moscow State University, 119192, Moscow, Russia

Author for correspondence.
Email: seliutski@imec.msu.ru
Россия, Москва

References

  1. Braun M. On Some Properties of the Multiple Pendulum // Archive of Applied Mechanics. 2003. V. 72. P. 899–910. https://doi.org/10.1007/s00419-002-0263-4
  2. Gupta M.K., Sinha N., Bansal K., Singh A.K. Natural Frequencies of Multiple Pendulum Systems Under Free Condition // Arch. Appl. Mech. 2016. V. 86. P. 1049–1061. https://doi.org/10.1007/s00419-015-1078-4
  3. Felmer P.L. Multiple Periodic Solutions for Lagrangian Systems in Tn // Nonlinear Analysis: Theory, Methods & Applications. 1990. V. 15. Iss. 9. P. 815–831. https://doi.org/10.1016/0362-546X(90)90095-X
  4. Tarantello G. Multiple Forced Oscillations for the N-Pendulum Equation // Commun. Math. Phys. 1990. V. 132. P. 499–517.
  5. Roselli P. A Multiplicity Result for the Periodically Forced N-Pendulum with Nonzero-Mean Valued Forcings // Nonlinear Anal. T.M.A. 2001. V. 43. P. 1019–1041. https://doi.org/10.1016/S0362-546X(99)00239-4
  6. Розенблат Г.М. О параметрической стабилизации многозвенного обращенного маятника // АиТ. 1985. № 3. С. 162–165.
  7. Udwadia F.E., Koganti P.B. Dynamics and Control of a Multi-Body Planar Pendulum // Nonlinear Dynamics. 2015. V. 81. P. 845–866. https://doi.org/10.1007/s11071-015-2362-0
  8. Анохин Н.В. Приведение многозвенного маятника в положение равновесия с помощью одного управляющего момента // Изв. РАН. ТиСУ. 2013. № 5. С. 44–53.
  9. Ананьевский И.М., Анохин Н.В. Управление пространственным движением многозвенного перевернутого маятника с помощью момента, приложенного к первому звену // ПММ. 2014. Т. 78. Вып. 6. С. 755–765.
  10. Ананьевский И.М. Управление трехзвенным перевернутым маятником в окрестности положения равновесия // ПММ. 2018. Т. 82. Вып. 2. С. 149–155.
  11. Wojna M., Wijata A., Wasilewski G., Awrejcewicz J. Numerical and Experimental Study of a Double Physical Pendulum with Magnetic Interaction // J. Sound and Vibration. 2018. V. 430. P. 214–230.https://doi.org/10.1016/j.jsv.2018.05.032
  12. Marghitu D.B., Zhao J. Impact of a Multiple Pendulum with a Non-Linear Contact Force // Mathematics. 2020. V. 8. P. 1202. https://doi.org/10.3390/math8081202
  13. Lobas L.G. Generalized Mathematical Model of an Inverted Multilink Pendulum with Follower Force // Int. Appl. Mech. 2005. V. 41. P. 566–572. https://doi.org/10.1007/s10778-005-0125-1
  14. Puzyrov V., Awrejcewicz J., Losyeva N., Savchenko N. On the Stability of the Equilibrium of the Double Pendulum with Follower Force: Some New Results // J. Sound and Vibration. 2022. V. 523. P. 116699. https://doi.org/10.1016/j.jsv.2021.116699
  15. Локшин Б.Я., Самсонов В А. Авторотационные и автоколебательные режимы движения аэродинамического маятника // ПММ. 2013. Т. 77. Вып. 4. С. 501–513.
  16. Локшин Б.Я., Самсонов В.А., Шамолин М.В. Маятниковые системы с динамической симметрией // Современная математика и ее приложения. 2016. Т. 100. С. 76–133.
  17. Selyutskiy Y.D., Holub A.P., Dosaev M.Z. Elastically Mounted Double Aerodynamic Pendulum // Int. J. Structural Stability and Dynamics. 2019. V. 19. № 5. P. 1941007. https://doi.org/10.1142/S0219455419410074
  18. Egger P., Caracoglia L. Analytical and Experimental Investigation on a Multiple-Mass-Element Pendulum Impact Damper for Vibration Mitigation // J. Sound and Vibration. 2015. V. 353. P. 38–57. https://doi.org/10.1016/j.jsv.2015.05.003
  19. Izadgoshasb I., Lim Y.Y., Tang L., Padilla R.V., Tang Z.S., Sedighi M. Improving Efficiency of Piezoelectric Based Energy Harvesting from Human Motions Using Double Pendulum System // Energy Conversion and Management. 2019. V. 184. P. 559–570. Doi: .https://doi.org/10.1016/j.enconman.2019.02.001
  20. Chen J., Bao B., Liu J., Wu Y., Wang Q. Piezoelectric Energy Harvester Featuring a Magnetic Chaotic Pendulum // Energy Conversion and Management. 2022. V. 269. P. 116155. https://doi.org/10.1016/j.enconman.2022.116155
  21. Selyutskiy Y., Dosaev M., Holub A., Ceccarelli M. Wind Power Harvester Based on an Aerodynamic Double Pendulum // Proc. Institution of Mechanical Engineers, P. C: J. Mechanical Engineering Science. 2022. V. 236. № 18. P. 10025–10032. https://doi.org/10.1177/09544062221085
  22. Dosaev M., Klimina L., Selyutskiy Y. Wind Turbine Based on Antiparallel Link Mechanism // New Trends in Mechanism and Machine Science, Mechanisms and Machine Science. V. 43. Springer International Publishing Switzerland, 2017. P. 543–550.
  23. Pigolotti L., Mannini C., Bartoli G., Thiele K. Critical and Post-Critical Behaviour of Two-Degree-of-Freedom Flutter-Based Generators // J. Sound and Vibration. 2017. V. 404. P. 116–140.https://doi.org/10.1016/j.jsv.2017.05.024
  24. Sheldahl R.E., Klimas P.C. Aerodynamic Characteristics of Seven Symmetrical Airfoil Sections Through 180-Degree Angle of Attack for Use in Aerodynamic Analysis of Vertical Axis Wind Turbines // Technical Report SAND-80-2114. Sandia National Labs. (USA), 1981. https://doi.org/10.2172/6548367
  25. Климина Л.А. Метод формирования авторотаций в управляемой механической системе с двумя степенями свободы // Изв. РАН. ТиСУ. 2020. № 6. С. 3–14.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (46KB)
3.

Download (405KB)
4.

Download (173KB)
5.

Download (96KB)
6.

Download (91KB)
7.

Download (61KB)


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies