Method of Forming a Regular Triangular Tethered Constellation of Microsatellites with Considering Their Motion Relative to the Centers of Mass

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The process of formation of a rotating tethered constellation of microsatellites in the form of a regular triangle is considered. A combined control method for deploying the system using tether tension control and thrusters is proposed. Two models are used to substantiate the proposed control method. The first model is obtained by the Lagrange method and is intended for constructing a nominal group formation program. In this model, microsatellites are considered as mass points and tethers are inextensible mechanical bonds. The second model is developed to assess the possibility of implementing a nominal control program, since it takes into account the extensibility of tethers, simulates the operation of cable release mechanisms, and takes into account the motion of microsatellites relative to their centers of mass on which the direction of low thrust forces depends. The equations of the spatial motion of the constellation, corresponding to the second model, are written in a fixed geocentric coordinate system and make it possible to estimate the effect of the static and inertial asymmetry of microsatellites on their motion relative to the center of mass. The results of numerical calculations are presented, confirming the possibility of using the proposed control method for the formation of a tethered constellation in the form of a regular triangle, rotating at the constant given angular velocity in its final state.

About the authors

Yu. M. Zabolotnov

Samara National Research University, 443100, Samara, Russia

Email: yumz@yandex.ru
Россия, Самара

Sh. Chen

Samara National Research University, 443100, Samara, Russia; Northwestern Polytechnical University, 710065, Xi’an, China

Author for correspondence.
Email: csm.ssau@yandex.ru
Россия, Самара; КНР, Сиань

References

  1. Bainum P.M., Harkness R.E., Stuive W. Attitude Stability and Damping of a Tethered Orbiting Interferometer Satellite System // J. Astronaut. Sci. 1972. V. 19. № 5. P. 364–389.
  2. Breakwell J.V., Andeen G.B. Dynamics of a Flexible Passive Space Array // J. Spacecraft Rockets. 1977. V. 14. № 9. P. 556–561.
  3. Chobotov V.A. Gravitationally Stabilized Solar Sower Station in Orbit // J. Spacecraft Rockets. 1977. V. 14. № 4. P. 249–251.
  4. Misra A.K., Diamond G.S. Dynamics of a Subsatellite System Support by Two Tether // J. Guid. Control Dynam. 1986. V. 9. № 1. P. 12–16.
  5. Лукьянов А.В. Пленочные отражатели в космосе. М.: Изд-во МГУ, 1977. 69 с.
  6. Ван Ч., Заболотнов Ю.М. Анализ динамики формирования тросовой группировки из трех наноспутников с учетом их движения вокруг центров масс // ПММ. 2021. Т. 85. Вып. 1. С. 21–43.
  7. Bekey I. Tethers Open New Space Options // J. Astronautics Aeronautics. 1983. V. 21. P. 32–40.
  8. Белецкий В.В., Левин Е.М. Динамика космических тросовых систем. М.: Наука, 1990. 329 с.
  9. Misra A.K., Pizzaro-Chong A. Dynamics of Tethered Satellites in a Hub-spoke Formation // Adv. Astronaut. Sci. 2004. V. 117. P. 219–229.
  10. Pizzaro-Chong A., Misra A.K. Dynamics of Multi-tethered Satellite Formations Containing a Parent Body // Acta Astronaut. 2008. V. 63. P. 1188–1202.
  11. Kumar K.D., Yasaka T. Rotating Formation Flying of Three Satellites Using Tethers // J. Spacecraft Rockets. 2004. V. 41. № 6. P. 973–985.
  12. Kim M., Hall C.D. Control of a Rotating Variable-length Tethered System // J. Guid. Control Dynam. 2004. V. 27. № 5. P. 849–858.
  13. Williams P. Optimal Deployment/retrieval of a Tethered Formation Spinning in the Orbital Plane // J. Spacecraft Rockets. 2006. V. 43. № 3. P. 638–650.
  14. Cai Z., Li X., Wu Z. Deployment and Retrieval of a Rotating Triangular Tethered Satellite Formation Near Libration Points // Acta Astronaut. 2014. V. 98. P. 37–49.
  15. Cai Z., Li X., Zhou H. Nonlinear Dynamics of a Rotating Triangular Tethered Satellite Formation Near Libration Points // Aerosp. Sci. Technol. 2015. V. 42. P. 384–391.
  16. Su B., Zhang F., Huang P. Robust Control of Triangular Tethered Satellite Formation with Unmeasured Velocities // Acta Astronaut. 2021. V. 186. P. 190–202.
  17. Chen S., Li A., Wang C. Analysis of the Deployment of a Three-mass Tethered Satellite Formation // International Workshop on Navigation and Motion Control (NMC 2020) // IOP Conf. Series: Materials Science and Engineering, Samara. 2020. V. 984. C. 012–028.
  18. Zabolotnov Yu.M. Control of the Deployment of an Orbital Tether System that Consists of Two Small Spacecraft // Cosmic Res. 2017. V. 55. № 3. P. 224–233.
  19. Шилов А.А. Оптимальная коррекция матрицы направляющих косинусов при расчетах вращения твердого тела // Уче. зап. ЦАГИ. 1977. Т. 8. № 5. С. 137–139.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (54KB)
3.

Download (253KB)
4.

Download (86KB)
5.

Download (218KB)
6.

Download (312KB)
7.

Download (243KB)


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies