Синтез карбида титана в дуговом реакторе при атмосферном давлении

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Выполнен синтез карбида титана в дуговом реакторе атмосферного давления при воздействии плазменной струи на шихту стехиометрического состава Ti : C ~ 1 : 1.05. Установлены зависимости фазового состава синтезируемого порошка TiC от продолжительности нахождения шихты под воздействием потока термической плазмы, а также от силы тока в диапазоне 40–120 А, подаваемого на электродуговой плазмотрон. Полученные при оптимальном режиме синтеза порошки характеризуются кубической фазой карбида титана, фракционный состав представлен полидисперсными частицами с ярко выраженными агломератами размером порядка 50–100 мкм; при этом поверхность агломератов представлена уплотненной коркой с перфорацией (диаметр пор не превышает 2 мкм).

About the authors

А. Гумовская

Томский государственный архитектурно-строительный университет; Национальный исследовательский Томский политехнический университет

Author for correspondence.
Email: aag109@tpu.ru
Россия, 634003, Томск, Соляная пл., 2; Россия, 634050, Томск, , пр. Ленина, 30

В. Шеховцов

Томский государственный архитектурно-строительный университет

Email: aag109@tpu.ru
Россия, 634003, Томск, Соляная пл., 2

А. Пак

Национальный исследовательский Томский политехнический университет

Email: aag109@tpu.ru
Россия, 634050, Томск, , пр. Ленина, 30

Р. Герасимов

Томский государственный архитектурно-строительный университет; Национальный исследовательский Томский политехнический университет

Email: aag109@tpu.ru
Россия, 634003, Томск, Соляная пл., 2; Россия, 634050, Томск, , пр. Ленина, 30

О. Волокитин

Томский государственный архитектурно-строительный университет

Email: aag109@tpu.ru
Россия, 634003, Томск, Соляная пл., 2

Г. Мамонтов

Национальный исследовательский Томский политехнический университет

Email: aag109@tpu.ru
Россия, 634050, Томск, , пр. Ленина, 30

References

  1. Bonis A. De Formation of Titanium Carbide (TiC) and TiC@C Core-Shell Nanostructures by Ultra-Short Laser Ablation of Titanium Carbide and Metallic Titanium in Liquid // J. Colloid Interface Sci. 2017. V. 489. P. 76–84. https://doi.org/10.1016/j.jcis.2016.08.078
  2. Cho D. Synthesis of Titanium Carbide–Carbon Nanofibers via Carbothermal Reduction of Titania with Carbon // Ceram. Int. 2015. V. 41. № 9. P. 10974–10979. https://doi.org/10.1016/j.ceramint.2015.05.041
  3. Dong Q. Functionalized Titanium Carbide as Novel Catalyst Support for Pd Catalyzed Electrochemical Reaction // Int. J. Hydrogen Energy. 2017. V. 42. № 5. P. 3206–3214. https://doi.org/10.1016/j.ijhydene.2016.09.217
  4. Ghidiu M. Conductive Two-Dimensional Titanium Carbide “Clay” with High Volumetric Capacitance // Nature. 2014. V. 516. P. 78–81. https://doi.org/10.1038/nature13970
  5. Ghosh S. Synthesis of Titanium Carbide Nanoparticles by Wire Explosion Process and Its Application in Carbon Dioxide Adsorption // J. Alloys Compd. 2019. V. 794. P. 645–653. https://doi.org/10.1016/j.jallcom.2019.04.299
  6. Gusev A. I. Phase Equilibria, Phases and Compounds in the TiC System // Russ. Chem. Rev. 2002. V. 71. № 6. P. 439–463. https://doi.org/10.1070/RC2002v071n06ABEH000721
  7. Kunkel C. Combining Theory and Experiment for Multitechnique Characterization of Activated CO2 on Transition Metal Carbide (001) Surfaces // J. Phys. Chem. C. 2019. V. 123. № 13. P. 7567–7576. https://doi.org/10.1021/acs.jpcc.7b12227
  8. Lin S. Y., Zhang X. Two-Dimensional Titanium Carbide Electrode with Large Mass Loading for Supercapacitor // J. Power Sources. 2015. V. 294. P. 354–359. https://doi.org/10.1016/j.jpowsour.2015.06.082
  9. Luo Y. A Long Cycle Life Asymmetric Supercapacitor Based on Advanced Nickel-Sulfide/Titanium Carbide (Mxene) Nanohybrid and MXene Electrodes // J. Power Sources. 2020. V. 450. P. 227694. https://doi.org/10.1016/j.jpowsour.2019.227694
  10. Rasaki S. A. Synthesis and Application of Nano-Structured Metal Nitrides and Carbides: A Review // Prog. Solid State Chem. 2018. V. 50. P. 1–15. https://doi.org/10.1016/j.progsolidstchem.2018.05.001
  11. Shekhovtsov V.V., Skripnikova N.K., Volokitin O.G. Phase Transitions in SiO2 Nanopowder Synthesized by Electric Arc Plasma // IEEE Trans. plasma Sci. 2021. V. 49. № 9. https://doi.org/10.1109/TPS.2021.3091138
  12. Syamsai R. Synthesis and Properties of 2D-Titanium Carbide MXene Sheets towards Electrochemical Energy Storage Applications // Ceram. Int. 2017. V. 43. № 16. P. 13119–13126. https://doi.org/10.1016/j.ceramint.2017.07.003
  13. Крылова Т.А. Коррозионная стойкость и износостойкость покрытий, полученных методом вневакуумной электронно-лучевой наплавки тугоплавких карбидов на низкоуглеродистую сталь // Неорган. материалы. 2020. Т. 56. № 3. С. 343–347. https://doi.org/10.31857/S0002337X20030094
  14. Сеплярский Б.С. Фазовый состав и структурa продуктов синтеза карбида титана с никелевой связкой // Неорган. материалы. 2019. Т. 55. № 11. С. 1169–1175. https://doi.org/10.1134/S0002337X19110113

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (116KB)
3.

Download (215KB)
4.

Download (193KB)
5.

Download (1MB)
6.

Download (3MB)

Copyright (c) 2023 А.А. Гумовская, В.В. Шеховцов, А.Я. Пак, Р.Д. Герасимов, О.Г. Волокитин, Г.Я. Мамонтов

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies