Microstructural Reasons for the Scattering of Impact Toughness Values of Low Carbon Low Alloy Hot Rolled Steel During Multiple Charpy Impact Tests
- Authors: Vorkachev K.G1, Kantor M.M1, Bozhenov V.A1, Solntsev K.A1
-
Affiliations:
- A. A. Baikov Institute of Metallurgy and Materials Science of the Russian Academy of Sciences
- Issue: Vol 61, No 9-10 (2025)
- Pages: 662–676
- Section: Articles
- URL: https://journals.rcsi.science/0002-337X/article/view/378982
- DOI: https://doi.org/10.7868/S3034558825050137
- ID: 378982
Cite item
Abstract
About the authors
K. G Vorkachev
A. A. Baikov Institute of Metallurgy and Materials Science of the Russian Academy of Sciences
Email: KGV@imet.ac.ru
Moscow, Russian Federation
M. M Kantor
A. A. Baikov Institute of Metallurgy and Materials Science of the Russian Academy of SciencesMoscow, Russian Federation
V. A Bozhenov
A. A. Baikov Institute of Metallurgy and Materials Science of the Russian Academy of SciencesMoscow, Russian Federation
K. A Solntsev
A. A. Baikov Institute of Metallurgy and Materials Science of the Russian Academy of SciencesMoscow, Russian Federation
References
- Кантор М.М., Боженов В.А. Рассеяние значений ударной вязкости низколегированной стали в критическом интервале хладноломкости // Материаловедение. 2013. № 11. С. 3–15.
- Krauss G. Solidification, segregation, and banding in carbon and alloy steels // Metall. Mater. Trans. B. 2003. V. 34. P. 781–792. https://doi.org/10.1007/s11663-003-0084-z
- Kirkaldy J.S., Brigham R.J., Domian H.A., Ward R.G. A study of banding in skelp by electron-probe microanalysis // Can. Metall. Q. 1963. V. 2. P. 233–241.
- Takahashi T., Ponge D., Raabe D. Investigation of orientation gradients in pearlite in hypoeutectoid steel by use of orientation imaging microscopy // Steel Res. Int. 2007. V. 78. № 1. P. 38–41. https://doi.org/10.1002/srin.200705857
- Кантор М.М., Воркачев К.Г. Микроструктура и субструктура перлита доэвтектоидных ферритно-перлитных сталей // Металловедение и термическая обработка металлов. 2017. № 5. С. 265–271.
- Кантор М.М., Воркачев К.Г., Челпанов В.И., Солнцев К.А. Сростки доэвтектоидного и перлитного ферритов в низкоуглеродистой низколегированной стали // Неорган. материалы. 2020. Т. 56. № 12. С. 1388–1392. https://doi.org/10.31857/S0002337X20120088
- Guo F., Wang X., Liu W., Shang C., Misra R.D. K., Wang H., Zhao T., Peng C. The influence of centerline segregation on the mechanical performance and microstructure of X70 pipeline steel // Steel Res. Int. 2018. V. 89. Р. 1800407. https://doi.org/10.1002/srin.201800407
- Kovalyova T., Issagulov A., Kovalev P., Kulikov V., Kvon S., Arinova S. Structural anisotropy parameters’ effect on the low-temperature impact strength of alloy steels in rolled products // Metals. 2023. V. 13. № 7. Р. 1157. https://doi.org/10.3390/met13071157
- Guo F., Liu W., Wang X., Misra R.D.K., Shang C. Controlling variability in mechanical properties of plates by reducing centerline segregation to meet strain-based design of pipeline steel // Metals. 2019. V. 9. № 7. Р. 749. https://doi.org/10.3390/met9070749
- Bertolo V., Jiang Q., Scholl S., Petrov R.H., Hangen U., Walters C., Sietsma J., Popovich V. A comprehensive quantitative characterization of the multiphase microstructure of a thick-section high strength steel // J. Mater. Sci. 2022. V. 57. P. 7101–7126. https://doi.org/10.1007/s10853-022-07121-y
- Wang X., Wang X., Liu W., Shang C. Effect of segregation band on the microstructure and properties of a wind power steel before and after simulated welding // Metals. 2024. V. 14. № 1. Р. 129. https://doi.org/10.3390/met14010129
- Кантор М.М., Воркачев К.Г., Боженов В.А., Солнцев К.А. Ударная вязкость низкоуглеродистых низколегированных сталей с ферритно-бейнитной микроструктурой по результатам множественных испытаний // Неорган. материалы. 2024. Т. 60. № 2. С. 257–273.
- Штремель М.А. Информативность измерений ударной вязкости // Металловедение и термическая обработка металлов. 2008. № 11. С. 37–51.
- Pineau A. Development of the local approach to fracture over the past 25 years: theory and applications // Int. J. Fract. 2006. V. 138. P. 139–166. https://doi.org/10.1007/s10704-006-0035-1
- Chen J.-H., Cao R. Micromechanism of cleavage fracture of metals: a comprehensive microphysical model for cleavage cracking in metals. Oxford: Butterworth-Heinemann, 2014. P. 1289.
- Wright S.I., Nowell M.M. EBSD image quality mapping // Microsc. Microanal. 2006. V. 12. № 1. P. 72–84. https://doi.org/10.1017/S1431927606060090
- Wright S.I., Nowell M.M., Field D.P. A review of strain analysis using electron backscatter diffraction // Microsc. Microanal. 2011. V. 17. № 3. P. 316–329. https://doi.org/10.1017/S1431927611000055
- Ping D.H., Guo S.Q., Imura M., Liu X., Ohmura T., Ohnuma M., Lu X., Abe T., Onodera H. Lath formation mechanisms and twinning as lath martensite substructures in an ultra low-carbon iron alloy // Sci. Rep. 2018. V. 8. Р. 14264. https://doi.org/10.1038/s41598-018-32679-6
- Sugiyama M., Takei M., Sekida S., Maruyama N. Characterization of hierarchical lath martensite microstructure in low carbon steels using ultra-high voltage TEM and SEM-EBSD analysis // IOP Conf. Ser: Mater. Sci. Eng. 2022. V. 1249. P. 012020. https://doi.org/10.1088/1757-899X/1249/1/012020
- Белый А.П., Исаев О.Б., Матросов Ю.И., Носоченко А.О. Центральная сегрегационная неоднородность в непрерывнолитых листовых заготовках и толстолистовом прокате. / Под ред. Синельникова В.А. М.: Металлургиздат, 2005. 133 с.
- Hillert M., Höglund L., Ågren J. Role of carbon and alloying elements in the formation of bainitic ferrite // Metall. Mater. Trans. A. 2004. V. 35. P. 3693–3700. https://doi.org/10.1007/s11661-004-0275-5
- Sherby O.D., Wadsworth J., Lesuer D.R., Syn C.K. Revisiting the structure of martensite in iron-carbon steels // Mater. Trans. 2008. V. 49. № 9. P. 2016–2027. https://doi.org/10.2320/matertrans.MRA2007338
- Morris Jr.J.W., Kinney C., Pytlewski K., Adachi Y. Microstructure and cleavage in lath martensitic steels // Sci. Technol. Adv. Mater. 2013. V. 14. Р. 014208. https://doi.org/10.1088/1468-6996/14/1/014208
- Тылкин М.А., Большаков В.И., Одесский П.Д. Структура и свойства строительной стали. М.: Металлургия, 1983. 287 с.
- Одесский П.Д. О современных проблемах испытаний на ударный изгиб сталей для металлических конструкций // Зав. лаборатория. Диагностика материалов. 2001. Т. 67. № 7. С. 50–56.
- Кудря А.В., Соколовская Э.А. Глава 23. Наблюдение и измерение разрушения материалов с неоднородной структурой. перспективные материалы и технологии. Монография. В 2-х томах. Т. 2. / Под ред. Клубовича В.В. Витебск: ВГТУ, 2017. C. 436–453.
- Zhang X.Z., Knott J.F. The statistical modelling of brittle fracture in homogeneous and heterogeneous steel microstructures // Acta Mater. 2000. V. 48. № 9. P. 2135–2146. https://doi.org/10.1016/S1359-6454(00)00055-0
Supplementary files

