Self-Propagating High-Temperature Synthesis, Phase Stability and Properties of the Heusler Cu2TiAl Alloy
- Authors: Busurina M.L1, Karpov A.V1, Kovalev D.Y1, Sytschev A.E1
-
Affiliations:
- Merzhanov Institute of Structural Macrokinetics and Problems of Materials Science of the Russian Academy of Sciences
- Issue: Vol 61, No 9-10 (2025)
- Pages: 652–661
- Section: Articles
- URL: https://journals.rcsi.science/0002-337X/article/view/378981
- DOI: https://doi.org/10.7868/S3034558825050122
- ID: 378981
Cite item
Abstract
About the authors
M. L Busurina
Merzhanov Institute of Structural Macrokinetics and Problems of Materials Science of the Russian Academy of Sciences
Email: busurina@ism.ac.ru
Chernogolovka, Russian Federation
A. V Karpov
Merzhanov Institute of Structural Macrokinetics and Problems of Materials Science of the Russian Academy of SciencesChernogolovka, Russian Federation
D. Y Kovalev
Merzhanov Institute of Structural Macrokinetics and Problems of Materials Science of the Russian Academy of SciencesChernogolovka, Russian Federation
A. E Sytschev
Merzhanov Institute of Structural Macrokinetics and Problems of Materials Science of the Russian Academy of SciencesChernogolovka, Russian Federation
References
- Марченков В.В., Ирхин В.Ю. Полуметаллические ферромагнетики, спиновые бесщелевые полупроводники и топологические полуметаллы на основе сплавов Гейслера: теория и эксперимент // ФММ. 2021. Т. 122. № 12. С. 1221–1246. https://doi.org/10.31857/S0015323021120068
- Graf T., Felser C., Parkin S.S.P. Simple rules for the understanding of Heusler compounds // Prog Solid State Chem. 2011. V. 39. P. 1–50. http://dx.doi.org/10.1016/j.progsolidstchem.2011.02.001
- Zimm C., Jastrab A., Sternberg A., Pecharsky V., Gschneidner K.Jr., Osborne M., Anderson I. Description and performance of a near-room temperature magnetic refrigerator // Kittel P. (eds). Adv. Cryog. Eng. V. 43. Boston: Springer, MA. P. 1759–1766.
- Hayashi K., Eguchi M., Miyazaki Y. Structural and thermoelectric properties of ternary full-Heusler alloys // J. Electron. Mater. 2017. V. 46. P. 2710–2716. https://doi.org/10.1007/s11664-016-4944-0
- Шредер Е.И., Филанович А.Н., Чернов Е.Д., Лукоянов А.В., Марченков В.В., Сташкова Л.А. Электронная структура, термоэлектрические и оптические свойства сплавов Гейслера Mn2MeAl (Me = Ti, V, Cr) // ФMM. 2023. T. 124. № 7. C. 608–615. https://doi.org/10.31857/S0015323023600624
- Zhu K., Zhao Y., Qu H., Wu Zh., Zhao X. Microstructure and properties of burn-resistant Ti–Al–Cu alloys // J. Mater. Sci. 2000. V. 35. P. 5609–5612. https://doi.org/10.1023/A:1004873501005
- Salehi M., Hosseini R. Structural characterization of novel Ti–Cu intermetallic coatings // Surf. Eng. 1996. V. 12. № 3. P. 221–224. https://doi.org/10.1179/sur.1996.12.3.221
- Евстропов Д.А. Формирование структуры и свойств композиционных покрытий Cu–Ti-системы на поверхности медных деталей: автореф. дис. канд. техн. наук: 05.16.09. Волгоград. ВГТУ. 2016.
- Radek N. Experimental investigations of the Cu–Mo and Cu–Ti electrospark coatings modified by laser beam // Adv. Manuf. Sci. Technol. 2008. V. 32. № 2. P. 53–68.
- Chen X., Zhang F., Chi M., Yang S., Wang S., Li X., Zheng S. Microstructure, superelasticity and shape memory effect by stress-induced martensite stabilization in Cu–Al–Mn–Ti shape memory alloys // J. Mater. Sci. Eng. B. 2018. V. 236–237. P. 10–17. https://doi.org/10.1016/j.mseb.2018.11.027
- Li S., Takahashi Y.K., Sakuraba Y., Chen J., Furubayashi T., Mryasov O., Faleev S., Hono K. Current-perpendicular-to-plane giant magnetoresistive properties in Co2Mn(Ge0.75Ga0.25)/Cu2TiAl/Co2Mn(Ge0.75Ga0.25) all-Heusler alloy pseudo spin valve // J. Appl. Phys. 2016. V. 119. P. 093911. https://doi.org/10.1063/1.4942853
- Sherif E.M., Abdoa H.S., Latief F.H., Alharthia N.H., Sherif Z.A. Fabrication of Ti–Al–Cu new alloys by inductive sintering, characterization, and corrosion evaluation // J. Mater. Res. Technol. 2019. V. 8. № 5. P. 4302–4311. https://doi.org/10.1016/j.jmrt.2019.07.040
- Espinoza R., Palma R., Sepulveda A., Fuenzalida V. Microstructural characterization of dispersion-strengthened Cu–Ti–Al alloys obtained by reaction milling // Mater. Sci. Eng. A. 2007. V. 454–455. P. 183–193. https://doi.org/10.1016/j.msea.2006.11.042
- Levashov E.A., Mukasyan A.S., Rogachev A.S., Shtansky D.V. Self-propagating high-temperature synthesis of advanced materials and coatings // Int. Mater. Rev. 2017. V. 62. № 4. P. 203–239. https://doi.org/10.1080/09506608.2016.1243291
- Бусурина М.Л., Сычев А.Е., Карпов А.В., Сачкова Н.В., Ковалев И.Д. Синтез интерметаллидного сплава на основе системы Cu–Ti–Al. Структурно-фазовый анализ и электрофизические свойства // Изв. вузов. Цв. металлы. 2020. Т. 6. С. 87–94. https://doi.org/10.17073/0021-3438-2020-6-87-94
- Лазарев П.А., Бусурина М.Л., Боярченко О.Д., Ковалев Д.Ю., Сычев А.Е. Самораспространяющийся высокотемпературный синтез в системе Ti–Al–Mn // Неорган. материалы. 2023. Т. 59. № 6. С. 705–711. https://doi.org/10.31857/S0002337X23060118
- Vedernikov M.V. The thermoelectric powers of transition metals at high temperature // Adv. Phys. 1969. V. 18. № 74. P. 337–370. https://doi.org/10.1080/00018736900101317
- Римский Г.С., Руткаускас А.В., Буневич М.А. Электрические cвойства твердых растворов Ni1−xMxMnSb (M = Ti, V, Cr) // Изв. Гомельского гос. ун-та им. Ф. Скорины. 2022. Т. 6. С. 130–135. http://elib.gsu.by/jspui/handle/123456789/50672
- Wagner M.F., Paulus A.S., Sigle W. Experimental evidence of a size-dependent sign change of the Seebeck coefficient of Bi nanowire arrays // Sci. Rep. 2023. V. 13. P. 8290. https://doi.org/10.1038/s41598-023-35065-z
Supplementary files

