Self-Propagating High-Temperature Synthesis, Phase Stability and Properties of the Heusler Cu2TiAl Alloy

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The Heusler intermetallic alloy Cu2TiAl was obtained via self-propagating high-temperature synthesis (SHS). The Cu2TiAl phase content in the combustion products of the Cu–Ti–Al system reached 96.2 wt.%. The microstructure and properties of the synthesized alloy were investigated. High-temperature X-ray diffraction analysis (XRD) demonstrated the phase stability of the alloy during stepwise heating and revealed that the anomalous behavior of the temperature-dependent electrical resistivity curve in the range of T = 770–790 K is not associated with phase transformations. A change in the sign of the Seebeck coefficient from negative to positive was observed upon heating at ~ 470 K.

About the authors

M. L Busurina

Merzhanov Institute of Structural Macrokinetics and Problems of Materials Science of the Russian Academy of Sciences

Email: busurina@ism.ac.ru
Chernogolovka, Russian Federation

A. V Karpov

Merzhanov Institute of Structural Macrokinetics and Problems of Materials Science of the Russian Academy of Sciences

Chernogolovka, Russian Federation

D. Y Kovalev

Merzhanov Institute of Structural Macrokinetics and Problems of Materials Science of the Russian Academy of Sciences

Chernogolovka, Russian Federation

A. E Sytschev

Merzhanov Institute of Structural Macrokinetics and Problems of Materials Science of the Russian Academy of Sciences

Chernogolovka, Russian Federation

References

  1. Марченков В.В., Ирхин В.Ю. Полуметаллические ферромагнетики, спиновые бесщелевые полупроводники и топологические полуметаллы на основе сплавов Гейслера: теория и эксперимент // ФММ. 2021. Т. 122. № 12. С. 1221–1246. https://doi.org/10.31857/S0015323021120068
  2. Graf T., Felser C., Parkin S.S.P. Simple rules for the understanding of Heusler compounds // Prog Solid State Chem. 2011. V. 39. P. 1–50. http://dx.doi.org/10.1016/j.progsolidstchem.2011.02.001
  3. Zimm C., Jastrab A., Sternberg A., Pecharsky V., Gschneidner K.Jr., Osborne M., Anderson I. Description and performance of a near-room temperature magnetic refrigerator // Kittel P. (eds). Adv. Cryog. Eng. V. 43. Boston: Springer, MA. P. 1759–1766.
  4. Hayashi K., Eguchi M., Miyazaki Y. Structural and thermoelectric properties of ternary full-Heusler alloys // J. Electron. Mater. 2017. V. 46. P. 2710–2716. https://doi.org/10.1007/s11664-016-4944-0
  5. Шредер Е.И., Филанович А.Н., Чернов Е.Д., Лукоянов А.В., Марченков В.В., Сташкова Л.А. Электронная структура, термоэлектрические и оптические свойства сплавов Гейслера Mn2MeAl (Me = Ti, V, Cr) // ФMM. 2023. T. 124. № 7. C. 608–615. https://doi.org/10.31857/S0015323023600624
  6. Zhu K., Zhao Y., Qu H., Wu Zh., Zhao X. Microstructure and properties of burn-resistant Ti–Al–Cu alloys // J. Mater. Sci. 2000. V. 35. P. 5609–5612. https://doi.org/10.1023/A:1004873501005
  7. Salehi M., Hosseini R. Structural characterization of novel Ti–Cu intermetallic coatings // Surf. Eng. 1996. V. 12. № 3. P. 221–224. https://doi.org/10.1179/sur.1996.12.3.221
  8. Евстропов Д.А. Формирование структуры и свойств композиционных покрытий Cu–Ti-системы на поверхности медных деталей: автореф. дис. канд. техн. наук: 05.16.09. Волгоград. ВГТУ. 2016.
  9. Radek N. Experimental investigations of the Cu–Mo and Cu–Ti electrospark coatings modified by laser beam // Adv. Manuf. Sci. Technol. 2008. V. 32. № 2. P. 53–68.
  10. Chen X., Zhang F., Chi M., Yang S., Wang S., Li X., Zheng S. Microstructure, superelasticity and shape memory effect by stress-induced martensite stabilization in Cu–Al–Mn–Ti shape memory alloys // J. Mater. Sci. Eng. B. 2018. V. 236–237. P. 10–17. https://doi.org/10.1016/j.mseb.2018.11.027
  11. Li S., Takahashi Y.K., Sakuraba Y., Chen J., Furubayashi T., Mryasov O., Faleev S., Hono K. Current-perpendicular-to-plane giant magnetoresistive properties in Co2Mn(Ge0.75Ga0.25)/Cu2TiAl/Co2Mn(Ge0.75Ga0.25) all-Heusler alloy pseudo spin valve // J. Appl. Phys. 2016. V. 119. P. 093911. https://doi.org/10.1063/1.4942853
  12. Sherif E.M., Abdoa H.S., Latief F.H., Alharthia N.H., Sherif Z.A. Fabrication of Ti–Al–Cu new alloys by inductive sintering, characterization, and corrosion evaluation // J. Mater. Res. Technol. 2019. V. 8. № 5. P. 4302–4311. https://doi.org/10.1016/j.jmrt.2019.07.040
  13. Espinoza R., Palma R., Sepulveda A., Fuenzalida V. Microstructural characterization of dispersion-strengthened Cu–Ti–Al alloys obtained by reaction milling // Mater. Sci. Eng. A. 2007. V. 454–455. P. 183–193. https://doi.org/10.1016/j.msea.2006.11.042
  14. Levashov E.A., Mukasyan A.S., Rogachev A.S., Shtansky D.V. Self-propagating high-temperature synthesis of advanced materials and coatings // Int. Mater. Rev. 2017. V. 62. № 4. P. 203–239. https://doi.org/10.1080/09506608.2016.1243291
  15. Бусурина М.Л., Сычев А.Е., Карпов А.В., Сачкова Н.В., Ковалев И.Д. Синтез интерметаллидного сплава на основе системы Cu–Ti–Al. Структурно-фазовый анализ и электрофизические свойства // Изв. вузов. Цв. металлы. 2020. Т. 6. С. 87–94. https://doi.org/10.17073/0021-3438-2020-6-87-94
  16. Лазарев П.А., Бусурина М.Л., Боярченко О.Д., Ковалев Д.Ю., Сычев А.Е. Самораспространяющийся высокотемпературный синтез в системе Ti–Al–Mn // Неорган. материалы. 2023. Т. 59. № 6. С. 705–711. https://doi.org/10.31857/S0002337X23060118
  17. Vedernikov M.V. The thermoelectric powers of transition metals at high temperature // Adv. Phys. 1969. V. 18. № 74. P. 337–370. https://doi.org/10.1080/00018736900101317
  18. Римский Г.С., Руткаускас А.В., Буневич М.А. Электрические cвойства твердых растворов Ni1−xMxMnSb (M = Ti, V, Cr) // Изв. Гомельского гос. ун-та им. Ф. Скорины. 2022. Т. 6. С. 130–135. http://elib.gsu.by/jspui/handle/123456789/50672
  19. Wagner M.F., Paulus A.S., Sigle W. Experimental evidence of a size-dependent sign change of the Seebeck coefficient of Bi nanowire arrays // Sci. Rep. 2023. V. 13. P. 8290. https://doi.org/10.1038/s41598-023-35065-z

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).