Effect of Gelling Additives on the Behavior of Bioactive TiO2–P2O5/ZnO Composites in a Model Solution

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Bioactive TiO2–P2O5/ZnO composites were obtained, which are modified zinc oxide granules (in the inner part) based on Tokem 250 cationite, coated with a titanate-phosphate gel based on the TiO2–P2O5 system, followed by immersion in a solution of polyvinyl alcohol (PVA) or hydrolyzed liquid glass (sodium silicate). The heat treatment mode of the material is set: stepwise annealing for 30 minutes (150, 250, 350°C), 6 hours (600°C), 1 hour (800°C). The ability to form a calcium phosphate layer on the surface due to the presence of active Ti4+ surface centers was confirmed by trilometric titration to determine the total concentration of calcium and magnesium ions in SBF solution. After immersion in an SBF solution, micro-X-ray spectral analysis captures calcium, zinc, oxygen, titanium, and phosphorus on the surface of the composites, which corresponds to the physiological composition characteristic of bone tissue. To shape the biomaterial, PVA and liquid glass were introduced as gelling additives. The introduction of gelling additives has a beneficial effect on the biological properties of composites, but the stabilization of the total concentration of Ca2+ and Mg2+ ions in samples with a gelling additive of PVA occurs faster than with liquid glass. The obtained samples can be recommended for further research.

About the authors

E. S Lyutova

National Research Tomsk State University

Email: lyutova.tsu@mail.ru
Tomsk, Rassian Federation

F. I Sharipova

National Research Tomsk State University

Tomsk, Rassian Federation

Yu. S Gruzdeva

National Research Tomsk State University

Tomsk, Rassian Federation

D. K Ivanova

National Research Tomsk State University

Tomsk, Rassian Federation

L. P Borilo

National Research Tomsk State University

Tomsk, Rassian Federation

References

  1. Hellwinkel J.E., Working Z.M., Certain L., García A.J., Wenke J.C., Bahney C.S. The intersection of fracture healing and infection: orthopaedics research society workshop // J. Orthop. Res. 2022. V. 40. Р. 541–552. https://doi.org/10.1002/jor.25261
  2. El-Ghannam A. Bone reconstruction: from bioceramics to tissue engineering // Expert Rev. Med Devices. 2005. Р. 87–101. https://doi.org/10.1586/17434440.2.1.87
  3. Kohli N., Ho S., Brown S.J., Sawadkar P., Sharma V., Snow M., García-Gareta E. Bone remodelling in vitro: where are we headed: a review on the current understanding of physiological bone remodelling and inflammation and the strategies for testing biomaterials in vitro // Bone. 2018. V. 110. Р. 38–46. https://doi.org/10.1016/j.bone.2018.01.015
  4. Xue N., Ding X., Huang R., Jiang R., Huang H., Pan X., Min W., Chen J., Duan J.A., Liu P., Wang Y. Bone tissue engineering in the treatment of bone defects // Pharmaceuticals. 2022. V. 15. № 7. Р. 879. https://doi.org/10.3390/ph15070879
  5. Gkomoza P., Vardavoulias M., Pantelis D., Sarafoglou C. Comparative study of structure and properties of the thermal spray coatings using conventional and nanostructured hydroxyapatite powder, for applications in medical implants // Surf. Coat. Technol. 2019. V. 357 (16). https://doi.org/10.1016/j.surfcoat.2018.10.044
  6. Bigham A., Foroughi F., Rezvani G.E., Rafienia M., Neisiany R.E., Ramakrishna S. The journey of multifunctional bone scaffolds fabricated from traditional toward modern techniques // Bio-Design and Manufacturing. 2020. V. 3. Р. 281–306. https://doi.org/10.1007/s42242-020-00094-4
  7. Zhuang X.-M., Zhou B. Exosome secreted by human gingival fibroblasts in radiations therapy inhibits osteogenic differentiation of bone mesenchymal stem cells by transferring miR-23a // Biomed. Pharmacother. 2020. Р. 110672. https://doi.org/10.1016/j.biopha.2020.110672
  8. Hench L.L. Bioceramics: from concept to clinic // J. Am. Ceram. Soc. 1991. V. 7. Р. 1487–1510. https://doi.org/10.1111/j.1151-2916.1991.tb07132.x
  9. Hou X., Zhang L., Zhou Z., Luo X., Wang T., Zhao X., Lu B., Chen F., Zheng L. Calcium phosphate-based biomaterials for bone repair // J. Funct. Biomater. 2022. V. 13. Р. 187. https://doi.org/10.3390/jfb13040187
  10. Lyutova E.S., Tkachuk V.A., Selyunina L.A., Fedorishin D.A., Chen Y.-W. Facile synthesis of TiO2–SiO2–P2O5/CaO/ZnO with a core-shell structure for bone implantation // ACS Omega. 2022. V. 7(50). P. 46564–46572. https://doi.org/10.1021/acsomega.2c05398
  11. Kim T., See C.W., Li X., Zhu D. Orthopedic implants and devices for bone fractures and dеfects: past, present and perspective // Eng. Regen. 2020. V. 1. Р. 6–18. https://doi.org/10.1016/j.engreg.2020.05.003
  12. Ткачук В.А., Лютова Е.С., Борило Л.П., Бузаев А.А. Получение композитов TiO2–SiO2–P2O5/ZnO, исследование их свойств и возможностей применения в качестве биоматериала // Изв. вузов. Химия и хим. технология. 2024. Т. 67. № 5. С. 70–76. https://doi.org/10.6060/ivkkt.20246705.6953
  13. Kaya S., Cresswell M., Boccaccini A.R. Mesoporous silica-based bioactive glasses for antibiotic-free antibacterial applications // Mater. Sci. Eng. 2018. Р. 99–107. https://doi.org/10.1016/j.msec.2017.11.003
  14. Jeong J., Kim J.H., Shim J.H., Hwang N.S., Heo C.Y. Bioactive calcium phosphate materials and applications in bone regeneration // Biomater. Res. 2019. V. 23 (4). https://doi.org/10.1186/s40824-018-0149-3
  15. Wiesmann N., Tremel W., Brieger J. Zinc oxide nanoparticles for therapeutic purposes in cancer medicine // J. Mater. Chem. B. 2020. V. 8. Р. 4973‒4989. https://doi.org/10.1039/D0TB00739K
  16. Valiev R., Sabirov I., Zemtsova E., Parfenov E., Dluhos L., Lowe T. Nanostructured commercially pure titanium for development of miniaturized biomedical implants // Titanium in Medical and Dental Applications. Woodhead Publ., 2018. Р. 393–417. https://doi.org/10.1016/B978-0-12-812456-7.00018-4
  17. Miyazaki T., Imanaka S., Akaike J. Relationship between valence of titania and apatite mineralization behavior in simulated body environment // J. Am. Ceram. Soc. 2021. V. 104. Р. 3545–3553. https://doi.org/10.1111/jace.17725
  18. Kozik V.V., Borilo L.P., Lyutova E.S., Brichkov A.S., Chen Y.-W., Izosimova E.A. Preparation of CaO@TiO2–SiO2 biomaterial with a sol-gel method for bone implantation // ACS Omega. 2020. V. 5. P. 27221–27226. https://doi.org/10.1021/acsomega.0c03335
  19. Brady J., Dürig T., Lee P.I., Li J.-X. Polymer properties and characterization // Develop. Solid. Oral. Dosage. Forms. 2017. V. 7. P. 181–223. https://doi.org/10.1016/B978-0-12-802447-8.00007-8
  20. Turnbull G., Clarke J., Picard F., Riches P., Jia L., Han F. 3D Bioactive composite scaffolds for bone tissue engineering // Bioactive Mater. 2018. V. 3. Р. 278–314. https://doi.org/10.1016/j.bioactmat.2017.10.001
  21. Kokubo T. Bioactive glass ceramics: properties and applications // Biomaterials. 1991. V. 12. P. 155–163. https://doi.org/10.1016/0142-9612(91)90194-F
  22. Ekimova I., Minakova T., Ogneva T. Physicochemistry of alkaline-earth metals oxides surface // AIP Conf. Proc. 2016. Р. 060014-1‒060014-5. https://doi.org/10.1063/1.4937869
  23. Борило Л.П., Козик В.В., Лютова Е.С., Жаркова В.В., Бричков А.С. Получение и свойства сферических биоматериалов для системы TiO2–SiO2/СаO с использованием золь–гель-метода // Стекло и керамика. 2019. Т. 76. № 7–8. С. 42–49. https://doi.org/10.1007/s10717-019-00191-6
  24. Туан Т.А., Гусева Е.В., Нгуен А.Т., Ань Х.Т., Выонг Б.С., Фук Л.Х., Хиен Н.К., Хоа Б.Т., Лонг Н.В. Стандартный метод золь-гель синтеза биоактивного стекла 70S30C с использованием гидротермальной системы // Конденсированные среды и межфазные границы. 2021. Т 23. № 4. С. 585–593. https://doi.org/10.17308/kcmf.2021.23/3678

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).