High-Temperature Synthesis of Cast Materials in the V–Ti–N System

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The paper presents experimental results of high-temperature synthesis of cast nitride materials in the V–Ti–N system. For the first time, cast materials based on solid nitride and intermetallic solutions of the V–Ti–N system have been obtained by self-propagating high-temperature synthesis in the combustion mode from a powder mixture of V2O5 + Al + AlN + Ti. The syntheses were carried out in a 3 L reactor at a nitrogen pressure of 5 MPa. The initial mixtures were placed in quartz crucibles. When burning mixtures with a titanium content of αTi = 0–7.5%, the final products melt, and they are completely separated (separated) into the oxide (upper ingot) and “metallic” (lower ingot) parts. upon combustion of the initial (base) mixture, which does not contain titanium (αTi = 0), cast materials consisting of vanadium nitride V2N are synthesized. The introduction of titanium into this mixture leads to a significant change in the composition and microstructure of the final products. Titanium introduced into the initial mixture is dissolved in vanadium nitride to form solid solutions in V2N. In addition, titanium participates in the redox reaction with vanadium oxide to form oxides that pass into the oxide (upper) ingot. The resulting end products were characterized by X-ray diffraction and electron microscopy. Their structural and phase components have been studied.

About the authors

V. A Gorshkov

Merzhanov Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences

Email: gorsh@ism.ac.ru
Chernogolovka, Russian Federation

P. A Miloserdov

Merzhanov Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences

Chernogolovka, Russian Federation

O. D Boyarchenko

Merzhanov Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences

Chernogolovka, Russian Federation

I. D Kovalev

Merzhanov Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences

Chernogolovka, Russian Federation

References

  1. Choi D., Blomgren G.E., Kumta P.N. Fast and reversible surface redox reaction in nanocrystalline vanadium nitride supercapacitors // Adv. Mater. 2006. V. 18. № 9. P. 1178–1182. https://doi.org/10.1002/adma.200502471
  2. Oyama S.T. Preparation and catalytic properties of transition metal carbides and nitrides // Catal. Today. 1992. V. 15. № 2. P. 179–200. https://doi.org/10.1016/0920-5861(92)80175-M
  3. Sun Q., Fu Z.-W. Vanadium nitride as a novel thin film anode material for rechargeable lithium batteries // Electrochim. Acta. 2008. V. 54. № 2. P. 403–409. https://doi.org/10.1016/j.electacta.2008.07.057
  4. Kościelska B., Winiarski A., Jurga W. Structure and superconductivity of VN–SiO2 films obtained by thermal nitridation of sol–gel derived coatings // J. Non.-Cryst. Solids. 2010. V. 356. № 37–40. P. 1998–2000. https://doi.org/10.1016/j.jnoncrysol.2010.05.030
  5. Wang L.-B., Lou Z.-S., Bao K.-Y., Liu W.-Q., Zhou Q.-F. Low-temperature solid state synthesis and characterization of superconducting vanadium nitride // Chin. Phys. Lett. 2017. V. 34. № 2. P. 028101. https://doi.org/10.1088/0256-307X/34/2/028101
  6. Zeng R., Liu J., Du G.D., Li W.X., Wang J.L., Horvat J., Dou S.X. Magnetic and superconducting properties of spin-fluctuation-limited superconducting nanoscale VNx // J. Appl. Phys. 2012. V. 111. № 7. https://doi.org/10.1063/1.3679148
  7. Roldan M.A., López-Flores V., Alcala M.D., Ortega A., Real C. Mechanochemical synthesis of vanadium nitride // J. Eur. Ceram. Soc. 2010. V. 30. № 10. P 2099–2107. https://doi.org/10.1016/j.jeurceramsoc.2010.04.008
  8. Preiss H., Schultze D., Szulzewsky K. ChemInform Abstract: carbothermal synthesis of vanadium and chromium carbides from solution‐derived precursors // ChemInform. 1999. V. 30. № 17. https://doi.org/10.1002/chin.199917294
  9. Tripathy P.K. On the thermal decomposition of vanadium nitride // J. Mater. Chem. 2001. V. 11. № 5. P. 1514–1518. https://doi.org/10.1039/b007792p
  10. Choi J.-G., Ha J., Hong J.-W. Synthesis and catalytic properties of vanadium interstitial compounds // Appl. Catal. A Gen. 1998. V. 168. № 1. P. 47–56. https://doi.org/10.1016/S0926-860X(97)00332-3
  11. Toth L.E. Transition metal carbides and nitrides. Academic Press. N.Y.: Academic, 1971. 296 p.
  12. Новиков Н.В. Инструменты из сверхтвердых материалов. М.: Машиностроение, 2005. 555 с.
  13. Benko E., Wyczesany A., Barr T.L. CBN-metal/metal nitride composites // Ceram. Int. 2000. V. 26. № 6. P. 639–644. https://doi.org/10.1016/S0272-8842(99)00109-1
  14. Tian B., Yue W., Fu Z., Gu Y., Wang C., Liu J. Microstructure and tribological properties of W-implanted PVD TiN coatings on 316L stainless steel // Vacuum. 2014. V. 99. P. 68–75. https://doi.org/10.1016/j.vacuum.2013.04.019
  15. Deng B., Tao Y., Hu Z. The microstructure, mechanical and tribological properties of TiN coatings after Nb and C ion implantation // Appl. Surf. Sci. 2013. V. 284. P. 405–411. https://doi.org/10.1016/j.apsusc.2013.07.112
  16. Wang X., Kwon P.Y., Schrock D., (Dae-Wook) Kim D. Friction coefficient and sliding wear of AlTiN coating under various lubrication conditions // Wear. 2013. V. 304. № 1–2. P. 67–76. https://doi.org/10.1016/j.wear.2013.03.050
  17. Шишковский И.В., Закиев С.Е., Холпанов Л.П. Послойный синтез объемных изделий из нитридатитана методом СЛС // ФХОМ. 2005. Т. 3. С. 71–78.
  18. Kim W., Park J., Suh C., Cho S., Lee S., Shon I.-J. Synthesis of TiN nanoparticles by explosion of Ti wire in nitrogen gas // Mater. Trans. 2009. V. 50. № 12. P. 2897–2899. https://doi.org/10.2320/matertrans.M2009297
  19. Hokamoto K., Wada N., Tomoshige R., Kai S., Ujimoto Y. Synthesis of TiN powders through electrical wire explosion in liquid nitrogen // J. Alloys Compd. 2009. V. 485. № 1–2. P. 573–576. https://doi.org/10.1016/j.jallcom.2009.06.061
  20. Ananthapadmanabhan P., Taylor P.R., Zhu W. Synthesis of titanium nitride in a thermal plasma reactor // J. Alloys Compd. 1999. V. 287. № 1–2. P. 126–129. https://doi.org/10.1016/S0925-8388(99)00060-2
  21. Kakati M., Bora B., Sarma S., Saikia B.J., Shripathi T., Deshpande U., Dubey A., Ghosh G., Das A.K. Synthesis of titanium oxide and titanium nitride nano-particles with narrow size distribution by supersonic thermal plasma expansion // Vacuum. 2008. V. 82. № 8. P. 833–841. https://doi.org/10.1016/j.vacuum.2007.11.014
  22. Ichimiya N., Onishi Y., Tanaka Y. Properties and cutting performance of (Ti,V)N coatings prepared by cathodic arc ion plating // Surf. Coat. Technol. 2005. V. 200. № 5–6. P. 1377–1382. https://doi.org/10.1016/j.surfcoat.2005.08.026
  23. Roldán M.A., Alcalá M.D., Real C. Characterisation of ternary TixV1−xNy nitride prepared by mechanosynthesis // Ceram. Int. 2012. V. 38. № 1. P. 687–693. https://doi.org/10.1016/j.ceramint.2011.07.057
  24. Deeleard T., Chaiyakun S., Pokaipisit A., Limsuwan P. Effects of vanadium content on structure and chemical state of TiVN films prepared by reactive DC magnetron Co-sputtering // Mater. Sci. Appl. 2013. V. 4. № 9. P. 556–563. https://doi.org/10.4236/msa.2013.49068
  25. Ho W.-Y., Chen M., Lin C., Ho W.-Y. Characteristics of TiVN and TiVCN coatings by cathodic arc deposition. Proceedings of the 6th International Conference on Mechatronics, Materials, Biotechnology and Environment (ICMMBE 2016). Paris: Atlantis, 2016.
  26. Levashov E.A., Mukasyan A.S., Rogachev A.S., Shtansky D.V. Self-propagating high-temperature synthesis of advanced materials and coatings // Int. Mater. Rev. 2017. V. 62. № 4. P. 203–239. https://doi.org/10.1080/09506608.2016.1243291
  27. Borovinskaya I.P., Loryan V.E., Zakorzhevsky V.V. Combustion synthesis of nitrides for development of ceramic materials of new generation // Nitride Ceramics. Wiley, 2014. P. 1–48.
  28. Юхвид В.И. Жидкофазные СВС-процессы и литые материалы. Самораспространяющийся высокотемпературный синтез: теория и практика / Под ред. Мержанова А.Г. Черноголовка: Территория, 2001. C. 252–275.
  29. Gorshkov V.A., Miloserdov P.A., Boyarchenko O.D., Kovalev I.D., Golosova O.A. High-temperature synthesis of cast vanadium nitrides and aluminum oxynitrides // Ceram. Int. 2024. V. 50. № 12. P. 21821–21826. https://doi.org/10.1016/j.ceramint.2024.03.294
  30. Gorshkov V.A., Miloserdov P.A., Sachkova N.V., Kovalev I.D. SHS casting of (Mo,W)Si2, (Mo,Nb)Si2, and (Mo,Ti)Si2 silicides: effect of activating 3CaO2 + 2Al additives // Int. J. Self-Propag. High-Temp. Synth. 2014. V. 23. № 1. P. 36–40. https://doi.org/10.3103/S106138621401004X
  31. Горшков В.А., Ковалев Д.Ю., Боярченко О.Д., Сычев А.Е. Высокотемпературный синтез материалов в системе Сr–Mo–Al–C // Неорган. материалы. 2021. Т. 57. № 12. С. 1373-1379. https://doi.org/10.31857/S0002337X21120071
  32. Gorshkov V.A., Miloserdov P.A., Khomenko N.Y., Miloserdova O.M. High-temperature synthesis of composite materials based on (Cr, Mn, V)–Al–C MAX phases // Ceram. Int. 2021. V. 4. № 18. P. 25821–25825. https://doi.org/10.1016/j.ceramint.2021.05.310
  33. Gorshkov V.A., Khomenko N.Y., Kovalev D.Y. The synthesis of cast materials based on the MAX phases in a Cr–Ti–Al–C system // Russ. J. Non-Ferrous Met. 2021. V. 62. № 6. P. 732–739. https://doi.org/10.3103/S1067821221060092
  34. Закоржевский В.В., Боровинская И.П., Сачкова Н.В. Синтез нитрида алюминия в режиме горения // Неорган. материалы. 2002. Т. 38. № 11. C. 1340–1350.
  35. Shiriev A.A., Mukasyan A.S. Thermodynamics of SHS processes. Concise encyclopedia of self-propagating high-temperature synthesis. Elsevier, 2017. P. 385–387.
  36. Cahn R.W. Binary alloy phase diagrams// Adv. Mater. V. 3. Ed. Massalski T.B. Materials Park: ASM Int.,1991. V. 3. № 12. P. 628–629. https://doi.org/10.1002/adma.19910031215
  37. Диаграммы состояния двойных металлических систем / Под ред. Лякишева Н.П. М.: Машиностроение, 1996–2000.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).