Влияние состава и пористости электродов Bi3Ru3O11–Bi1.6Er0.4O3 на импеданс симметричных ячеек электрохимического генератора кислорода с электролитом Bi2O3–B2O3
- 作者: Fedorov S.V.1, Dergacheva P.E.1
-
隶属关系:
- Institute of Metallurgy and Materials Science named after A. A. Baikov of the Russian Academy of Sciences
- 期: 卷 61, 编号 3–4 (2025)
- 页面: 250-256
- 栏目: Articles
- URL: https://journals.rcsi.science/0002-337X/article/view/307436
- DOI: https://doi.org/10.31857/S0002337X25030142
- EDN: https://elibrary.ru/khrlct
- ID: 307436
如何引用文章
详细
Исследован импеданс симметричных электрохимических ячеек с электролитом Bi2O3–0.12 мас.% B2O3 и электродами Bi3Ru3O11–Bi1.6Er0.4O3 от содержания Bi1.6Er0.4O3 и общей пористости электродов. Установлено, что при содержании не менее 40 мас.% Bi1.6Er0.4O3 в электродах формируется плотный слой на границе раздела электрод/электролит, который ингибирует процесс смачивания твердых электронпроводящих зерен Bi3Ru3O11 жидкой фазой из электролита. Показано, что ячейка с электролитом Bi2O3–0.12 мас.% B2O3 и электродами Bi3Ru3O11–40 мас.% Bi1.6Er0.4O3 с пористостью 30–40 об.% обладает наименьшей суммой омического и поляризационного сопротивлений, величина которой составляет 0.14 ± 0.01 Ом см2 при 740°C, стабильной в течение 5 ч.
作者简介
S. Fedorov
Institute of Metallurgy and Materials Science named after A. A. Baikov of the Russian Academy of Sciences
Email: sfedorov@imet.ac.ru
Leninsky Ave., 49, Moscow, 119991 Russia
P. Dergacheva
Institute of Metallurgy and Materials Science named after A. A. Baikov of the Russian Academy of Sciences
编辑信件的主要联系方式.
Email: sfedorov@imet.ac.ru
Leninsky Ave., 49, Moscow, 119991 Russia
参考
- Dyer P.N., Richards R.E., Russek S.L., Taylor D.M. Ion transport membrane technology for oxygen separation and syngas producti- on // Solid State Ionics. 2000. V. 134. № 1–2. P. 21–33. https://doi.org/10.1016/S0167-2738(00)00710-4
- Anderson L.L., Armstrong P.A., Broekhuis R.R., Carolan M.F., Chen J., Hutcheon M.D., Lewinsohn C.A., Miller C.F., Repasky J.M., Taylor D.M., Woods C.M. Advances in ion transport membrane technology for oxygen and syngas production // Solid State Ionics. 2016. V. 288. P. 331–337. https://doi.org/10.1016/j.ssi.2015.11.010
- Zhang Y., Xie K., Zhou F., Wang F., Xu Q., Hu J., Ding H., Li P., Tan Y., Li D., Zhu J., Zhao C., Lin S., Wu Y. Electrochemical oxygen generator with 99.9% oxygen purity and high energy efficiency // Adv. Energy Mater. 2022. V. 12. № 29. P. 2201027. https://doi.org/10.1002/aenm.202201027
- Hua X., Zhou X., Du G., Xu Y. Resolving the formidable barrier of oxygen transferring rate (OTR) in ultrahigh-titer bioconversion/biocatalysis by a sealed-oxygen supply biotechnology (SOS) // Biotechnol. Biofuels. 2020. V. 13. P. 1–12. https://doi.org/10.1186/s13068-019-1642-1
- Zhao X., Zhao J., Li D., Zhou F., Li P., Tan Y., Zhou H., Zhang Y., Lin S., Wu Y. Electrolyte-free electrochemical oxygen generator for providing sterile and medical-grade oxygen in household applications // Device. 2024. V. 2. № 9. P. 100360. https://doi.org/10.1016/j.device.2024.100360
- Sun C., Hui R., Roller J. Cathode materials for solid oxide fuel cells: a review // J. Solid State Electrochem. 2010. V. 14. P. 1125–1144. https://doi.org/10.1007/s10008-009-0932-0
- Lenser C., Udomsilp D., Menzler N.H., Holtappels P., Fujisaki T., Kwati L., Matsumoto H., Sabato A.G., Smeacetto F., Chrysanthou A., Molin S. Solid oxide fuel and electrolysis cells // Advanced ceramics for energy conversion and storage. Ed. Guillon O. N.Y.: Elsevier, 2020. P. 387–547. https://doi.org/10.1016/b978-0-08-102726-4.00009-0
- Dergacheva P.E., Fedorov S.V., Belousov V.V. A high performance IT-EOG cell based on a solid/molten Bi2O3–B2O3 composite electrolyte // New J. Chem. 2023. V. 47. № 24. P. 11403–11407. https://doi.org/10.1039/D3NJ01687K
- Levin E.M., McDaniel C.L. The system Bi2O3–B2O3 // J. Am. Ceram. Soc. 1962. V. 45. № 8. P. 355–360. https://doi.org/10.1111/j.1151-2916.1962.tb11168.x
- Zhou W., Shao Z., Ran R., Chen Z., Zeng P., Gu H., Jin W., Xu N. High performance electrode for electrochemical oxygen generator cell based on solid electrolyte ion transport membrane // Electrochim. Acta. 2007. V. 52. № 22. P. 6297–6303. https://doi.org/10.1016/j.electacta.2007.04.010
- Wang S.F., Chen Y.W., Hsu Y.F. Honeycomb oxygen-generator with doped bismuth-oxide-based electrolyte and Ag electrode // J. Electroceram. 2020. V. 44. P. 104–111. https://doi.org/10.1007/s10832-020-00202-x
- Hong T., Fang S., Zhao M., Chen F., Zhang H., Wang S., Brinkman K.S. An intermediate-temperature oxygen transport membrane based on rare-earth doped bismuth oxide Dy0.08W0.04Bi0.88O2−δ // J. Electrochem. Soc. 2017. V. 164. № 4. P. F347–F353. https://doi.org/10.1149/2.1201704jes
- Загайнов И.В., Федоров C.В., Лысков Н.В., Кульбакин И.В., Антонова О.С. Высокотемпературные электропроводящие свойства твердых растворов GdxTiyZrzCe1−x−y−zO2 // Перспективные материалы. 2016. № 2. С. 30–35.
- Takeda T., Kanno R., Kawamoto Y., Takeda Y., Yamamoto O. New cathode materials for solid oxide fuel cells ruthenium pyrochlores and perovskites // J. Electrochem. Soc. 2000. V. 147. № 5. P. 1730–1733. https://doi.org/10.1149/1.1393425
- Řehák B., Horčic K., Frumar M., Koudelka L. Preparation and electrical conductivity of Bi2Ru2O7 single crystals // J. Cryst. Growth. 1984. V. 68. № 2. P. 647–649. https://doi.org/10.1016/0022-0248(84)90472-X
补充文件
