Synthesis and properties of modified sodium niobate ceramics
- Authors: Kaleva G.M.1, Politova E.D.1, Mosunov A.V.2, Sadovskaya N.V.3
-
Affiliations:
- Federal Research Center of Chemical Physics named after N. N. Semenov of the Russian Academy of Sciences
- Lomonosov Moscow State University
- National Research Center 'Kurchatov Institute'
- Issue: Vol 61, No 3–4 (2025)
- Pages: 212-218
- Section: Articles
- URL: https://journals.rcsi.science/0002-337X/article/view/307432
- DOI: https://doi.org/10.31857/S0002337X25030104
- EDN: https://elibrary.ru/khdctv
- ID: 307432
Cite item
Abstract
Методом твердофазного синтеза получены однофазные керамические образцы новых составов (1–x)NaNbO3–хLiNbO3 (x = 0, 0.05, 0.10, 0.15), в том числе модифицированные добавкой ZnO, и изучены их кристаллическая структура, микроструктура, диэлектрические и нелинейные оптические свойства. Установлено, что в образцах вблизи морфотропной фазовой границы ромбическая структура трансформируется в смесь ромбической и ромбоэдрической фаз. По мере увеличения содержания катионов лития в образцах наблюдается повышение температур фазовых переходов.
About the authors
G. M. Kaleva
Federal Research Center of Chemical Physics named after N. N. Semenov of the Russian Academy of Sciences
Email: galina_kaleva@mail.ru
Kosygin St., 4, Moscow, 119991 Russia
E. D. Politova
Federal Research Center of Chemical Physics named after N. N. Semenov of the Russian Academy of Sciences
Email: galina_kaleva@mail.ru
Kosygin St., 4, Moscow, 119991 Russia
A. V. Mosunov
Lomonosov Moscow State University
Email: galina_kaleva@mail.ru
Leninskie Gory, 1, Moscow, 119991 Russia
N. V. Sadovskaya
National Research Center 'Kurchatov Institute'
Author for correspondence.
Email: galina_kaleva@mail.ru
Leninsky Ave., 59, Moscow, 119333 Russia
References
- Directive 2002/95/EC of the European Parliament and of the Council of 27 January 2003 on the restriction of the use of certain hazardous substances in electrical and electronic equipment // Off. J. Eur. Union, L 37. 2003. V. 46. P. 19–23. http://data.europa.eu/eli/dir/2002/95/oj
- Zheng T., Wu J., Xiao D., Zhu J. Recent development in lead-free perovskite piezoelectric bulk materials // Prog. Mater. Sci. 2018. V. 98. P. 552–624. https://doi.org/10.1016/j.pmatsci.2018.06.002
- Wang G., Lu Z., Li Y., Li L., Ji H., Feteira A., Zhou D., Wang D., Shujun Zhang S., Reaney I.M. Electroceramics for high-energy density capacitors: current status and future perspectives // Chem. Rev. 2021. V. 121. P. 6124−6172. https://doi.org/10.1021/acs.chemrev.0c01264
- Li D., Zeng X., Li Z. et al. Progress and perspectives in dielectric energy storage ceramics // J. Adv. Ceram. 2021. V. 10. № 4. P. 675–703. https://doi.org/10.1007/s40145-021-0500-3
- García J.E. Extrinsic contribution and instability properties in lead-based and lead-free piezoceramics // Materials. 2015. V. 8. P. 7821– 7836. https://doi.org/10.3390/ma8115426
- Yang Z., Du H., Jin L. Poelman D. High-performance lead-free bulk ceramics for electrical energy storage applications: design strategies and challenges // J. Mater. Chem. A. 2021. V. 9. P. 18026–18085. https://doi.org/10.1039/d1ta04504k
- Wu J. Perovskite lead-free piezoelectric ceramics // J. Appl. Phys. 2020. V. 127. Р. 190901. https://doi.org/10.1063/5.0006261
- Веневцев Ю.Н., Политова Е.Д., Иванов С.А. Сегнето- и антисегнетоэлектрики семейства титаната бария. М.: Химия, 1985. 256 с.
- Panda P.K. Review: Environmental-friendly lead- free piezoelectric materials // J. Mater. Sci. 2009. V. 44. P. 5049–5062. https://doi.org/10.1007/s10853-009-3643-0
- Ye J., Wang G., Zhou M., Liu N., Chen X., Li S., Cao F. Dong X. Excellent comprehensive energy storage properties in novel lead-free NaNbO3-based ceramics for dielectric capacitor applications // J. Mater. Chem. C. 2019. V. 12. Р. 4. https://doi.org/10.1039/C9TC01414D
- Koruza J., Tellier J., Malič B., Bobnar V., Kosec M. Phase transitions of sodium niobate powder and ceramics, prepared by solid state synthesis // J. Appl. Phys. 2010. V. 108. Р. 113509. https://doi.org/10.1063/1.3512980
- Zhang M.-H., Zhao C., Fulanović L., Rödel J., Novak N., Schökel A., Koruza J. Revealing the mechanism of electric-field-induced phase transition in antiferroelectric NaNbO3 by in situ high-energy X-ray diffraction // Appl. Phys. Lett. 2021. V. 118. Р.132903. https://doi.org/10.1063/5.0043050
- Konieczny K., Czaja P. Electrical and thermal properyies of Na1–xLixNbO3 (x = 0.08, 0.1, 0.2) ceramics near the morphotropic phase boundary region // Arch. Metall. Mater. 2017. V. 62. № 2. P. 539–544. https://doi.org/10.1515/amm-2017-0079
- Chaker C., Gharbi W.E., Abdelmoula N., Simon A., Khemakhema H., Mario Maglione M. Na1−xLixNbO3 ceramics studied by X-ray diffraction, dielectric, pyroelectric, piezoelectric and Raman spectroscopy // J. Phys. Chem. Solids. 2011. V. 72. P. 1140–1146. https://doi.org/10.1016/j.jpcs.2011.07.002
- Aoyagi R., Iwata M. Maeda M. Piezoelectric properties and depolarization temperature of NaNbO3–LiNbO3 lead-free piezoelectric ceramics // Key Eng. Mater. 2009. V. 388. P. 233–236. https://doi.org/10.4028/www.scientific.net/KEM.388.233
- Smiga W., Garbarz-Glos B., Suchanicz J. et al. Structural and dielectric properties of Na0.99Li0.01NbO3 ceramics // Ferroelectrics. 2006. V. 345. P. 39–44. https://doi.org/10.1080/00150190601020925
- Politova E.D., Golubko N.V., Kaleva G.M., Mosunov A.V., Sadovskaya N.V., Stefanovich S.Yu., Kiselev D.A., Kislyuk A.M., Panda P.K. Processing and characterization of lead-free ceramics on the base of sodium–potassium niobate // J. Adv. Dielectr. 2018. V. 8. № 1. P. 1850004. https://doi.org/10.1142/S2010135X18500042
- Politova E.D., Golubko N.V., Kaleva G.M., Mosunov A.V., Sadovskaya N.V., Stefanovich S.Yu., Kiselev D.A., Kislyuk A.M., Chichkov M.V., Panda P.K. Structure, ferroelectric and piezoelectric properties of KNN-based perovskite ceramics // Ferroelectrics. 2019. V. 538 P. 45–51. https://doi.org/10.1080/00150193.2019.1569984
- Kołodziejczak-Radzimska A., Jesionowski T. Zinc oxide—from synthesis to application: a review // Materials. 2014. V. 7. P. 2833–2881. https://doi.org/10.3390/ma7042833
- Kurtz S.K., Perry T.T. A Powder technique for the evaluation of nonlinear optical materials // J. Appl. Phys. 1968. V. 39 (8). P. 3798–3813. https://doi.org/10.1063/1.1656857
- Lee H.J, Zhang S.H. Lead-free piezoelectrics. N.Y.: Springer, 2012. 291 p. https://doi.org/10.1007/978-1-4419-9598-8_9
Supplementary files
